Citation: |
[1] |
U. M. Ascher, S. J. Ruuth and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math, 25 (1997), 151-167. |
[2] |
U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823. |
[3] |
S. Boscarino, Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM Journal on Numerical Analysis, 45 (2007), 1600-1621. |
[4] |
S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci. Comput., 31 (2009), 1926-1945. |
[5] |
M. Braś and A. Cardone, Construction of efficient general linear methods for non-stiff differential systems, Math. Model. Anal., 17 (2012), 171-189. |
[6] |
M. Braś, A. Cardone and R. D'Ambrosio, Implementation of explicit nordsieck methods with inherent quadratic stability, Math. Model. Anal., 18 (2013), 289-307. |
[7] |
J. C. Butcher, Diagonally-implicit multi-stage integration methods, Appl. Numer. Math., 11 (1993), 347-363. |
[8] |
M. P. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math., 37 (2001), 535-549. |
[9] |
A. Cardone and Z. Jackiewicz, Explicit Nordsieck methods with quadratic stability, Numer. Algorithms, 60 (2012), 1-25. |
[10] |
A. Cardone, Z. Jackiewicz and H. Mittelmann, Optimization-based search for Nordsieck methods of high order with quadratic stability, Math. Model. Anal., 17 (2012), 293-308. |
[11] |
A. Cardone, Z. Jackiewicz, A. Sandu and H. Zhang, Extrapolated implicit-explicit Runge-Kutta methods, Math. Model. Anal., 19 (2014), 18-43. |
[12] |
A. Cardone, Z. Jackiewicz, A. Sandu and H. Zhang, Extrapolation-based implicit-explicit general linear methods, Numer. Algorithms, 65 (2014), 377-399. |
[13] |
J. Frank, W. Hundsdorfer and J. G. Verwer, On the stability of implicit-explicit linear multistep methods, Appl. Numer. Math., 25 (1997), 193-205. |
[14] |
W. Hundsdorfer and S. J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys., 225 (2007), 2016-2042. |
[15] |
W. Hundsdorfer and J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, vol. 33 of Springer Series in Comput. Mathematics, Springer-Verlag, 2003. |
[16] |
Z. Jackiewicz, General linear methods for ordinary differential equations, John Wiley & Sons Inc., Hoboken, NJ, 2009. |
[17] |
C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), 139-181. |
[18] |
L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations, in Recent trends in numerical analysis, vol. 3 of Adv. Theory Comput. Math., Nova Sci. Publ., Huntington, NY, 2001, 269-288. |
[19] |
L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005), 129-155. |
[20] |
W. M. Wright, The construction of order 4 DIMSIMs for ordinary differential equations, Numer. Algorithms, 26 (2001), 123-130. |
[21] |
H. Zhang and A. Sandu, A second-order diagonally-implicit-explicit multi-stage integration method, Procedia CS, 9 (2012), 1039-1046. |
[22] |
H. Zhang, A. Sandu and S. Blaise, High order implicit-explicit general linear methods with optimized stability regions, arXiv preprint, URL http://arxiv.org/abs/1407.2337. |
[23] |
H. Zhang, A. Sandu and S. Blaise, Partitioned and Implicit-Explicit General Linear Methods for ordinary differential equations, J. Sci. Comput., 61 (2014), 119-144. |
[24] |
E. Zharovski, A. Sandu and H. Zhang, A class of implicit-explicit two-step Runge-Kutta methods, SIAM J. Numer. Anal., 53 (2015), no. 1, 321-341. |