2015, 2015(special): 258-266. doi: 10.3934/proc.2015.0258

Stability of interacting traveling waves in reaction-convection-diffusion systems

1. 

Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil

2. 

Columbia College, Columbia University, New York, NY 10027, United States

3. 

Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, RJ 22460-320, Brazil

4. 

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205

Received  September 2014 Revised  January 2015 Published  November 2015

The stability of isolated combustion traveling waves has been exhaustively studied in the literature of reaction-diffusion systems. The analysis has been done mainly by neglecting other waves that are usually present in the solution and that can influence the stability of the combustion wave. In this paper, a numerical example on the influence of such interaction on wave stability are presented.
    The paper is illustrated through a simple model for the injection of air into a porous medium that contains a solid fuel. The model considered here reproduces a variety of observed phenomena and yet is simple enough to allow rigorous investigation. We refer on earlier work containing proofs of existence of traveling waves corresponding to combustion waves by phase plane analysis were presented; wave sequences that can occur as solutions of Riemann problems were identified.
Citation: Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258
References:
[1]

I. Akkutlu and Y. Yortsos, The dynamics of in-situ combustion fronts in porous media, J. of Combustion and Flame, 134 (2003), 229-247.

[2]

A. Aldushin and S. Kasparyan, Stability of stationary filtrational combustion waves, Combustion, Explosion, and Shock Waves, 17 (1981), 615-625.

[3]

A. Aldushin, I. Rumanov and B. Matkowsky, Maximal energy accumulation in a superadiabatic filtration combustion wave, J. of Combustion and Flame, 118 (1999), 76-90.

[4]

A. Bayliss, G. Leaf and B. Matkowsky, Pulsating and chaotic dynamics near the extinction limit, Combustion Science and Technology, 84 (1992), 253-278.

[5]

A. Bayliss and B. Matkowsky, Two routes to chaos in condensed phase combustion, SIAM J. Appl. Math., 50 (1990), 437-459.

[6]

A. Bayliss and B. Matkowsky, From traveling waves to chaos in combustion, SIAM Journal on Applied Mathematics, 54 (1994), 147-174.

[7]

I. Brailovsky and G. Sivashinsky, Chaotic dynamics in solid fuel combustion, Physica D: Nonlinear Phenomena, 65 (1993), 191-198.

[8]

J. Bruining, A. Mailybaev and D. Marchesin, Filtration combustion in wet porous medium, SIAM Journal on Applied Mathematics, 70 (2009), 1157-1177.

[9]

G. Chapiro, L. Furtado, D. Marchesin and S. Schecter, Numerical analysis of combustion waves and riemann solutions in light porous foam, 2014,, Preprint at http://preprint.impa.br/visualizar?id=5912., (). 

[10]

G. Chapiro, A. A. Mailybaev, A. Souza, D. Marchesin and J. Bruining, Asymptotic approximation of long-time solution for low-temperature filtration combustion, Comput. Geosciences, 16 (2012), 799-808.

[11]

G. Chapiro, D. Marchesin and S. Schecter, Combustion waves and Riemann solutions in light porous foam, Journal of Hyperbolic Differential Equations, 11 (2014), 295-328.

[12]

M. Decker and D. Schult, Dynamics of smoulder waves near extinction, Combustion Theory and Modelling, 8 (2004), 491-512.

[13]

A. Ghazaryan, Y. Latushkin, S. Schecter and A. de Souza, Stability of gasless combustion fronts in one-dimensional solids, Archive for Rational Mechanics and Analysis, 198 (2010), 981-1030.

[14]

L. W. Lake, Enhanced oil recovery, Old Tappan, NJ; Prentice Hall Inc., 1989.

[15]

A. Mailybaev, J. Bruining and D. Marchesin, Analysis of in situ combustion of oil with pyrolysis and vaporization, Combustion and Flame, 158 (2011), 1097-1108.

[16]

A. Mailybaev, D. Marchesin and J. Bruining, Resonance in low-temperature oxidation waves for porous media, SIAM Journal on Mathematical Analysis, 43 (2011), 2230-2252.

[17]

D. Marchesin and S. Schecter, Oxidation heat pulses in two-phase expansive flow in porous media, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 54 (2003), 48-83.

[18]

B. Matkowsky and G. Sivashinsky, Propagation of a pulsating reaction front in solid fuel combustion, SIAM J. Appl. Math., 35 (1978), 465-478.

[19]

J. Mota and S. Schecter, Combustion fronts in a porous medium with two layers, Journal of Dynamics and Differential Equations, 18 (2006), 615-665.

[20]

J. Norbury and A. Stuart, Travelling combustion waves in a porous medium. part i-existence, SIAM J. on Appl. Math., 48 (1988), 155-169.

[21]

J. Norbury and A. Stuart, Travelling combustion waves in a porous medium. part ii-stability, SIAM J. on Appl. Math., 48 (1988), 374-392.

[22]

S. Schecter and D. Marchesin, Geometric singular perturbation analysis of oxidation heat pulses for two-phase flow in porous media. dedicated to constantine dafermos on his 60th birthday, Bulletin of the Brazilian Mathematical Society, 32 (2001), 237-270.

[23]

D. Schult, B. Matkowsky, V. Volpert and A. Fernandez-Pello, Forced forward smolder combustion, Combustion and Flame, 104 (1996), 1-26.

[24]

R. Seydel, Practical bifurcation and stability analysis, Springer, 2010.

[25]

R. Weber, G. Mercer, H. Sidhu and B. Gray, Combustion waves for gases ($Le= 1$) and solids ($Le\to\infty$), Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453 (1997), 1105-1118.

[26]

Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The mathematical theory of combustion and explosion, Consultants Bureau, New York, 1985.

show all references

References:
[1]

I. Akkutlu and Y. Yortsos, The dynamics of in-situ combustion fronts in porous media, J. of Combustion and Flame, 134 (2003), 229-247.

[2]

A. Aldushin and S. Kasparyan, Stability of stationary filtrational combustion waves, Combustion, Explosion, and Shock Waves, 17 (1981), 615-625.

[3]

A. Aldushin, I. Rumanov and B. Matkowsky, Maximal energy accumulation in a superadiabatic filtration combustion wave, J. of Combustion and Flame, 118 (1999), 76-90.

[4]

A. Bayliss, G. Leaf and B. Matkowsky, Pulsating and chaotic dynamics near the extinction limit, Combustion Science and Technology, 84 (1992), 253-278.

[5]

A. Bayliss and B. Matkowsky, Two routes to chaos in condensed phase combustion, SIAM J. Appl. Math., 50 (1990), 437-459.

[6]

A. Bayliss and B. Matkowsky, From traveling waves to chaos in combustion, SIAM Journal on Applied Mathematics, 54 (1994), 147-174.

[7]

I. Brailovsky and G. Sivashinsky, Chaotic dynamics in solid fuel combustion, Physica D: Nonlinear Phenomena, 65 (1993), 191-198.

[8]

J. Bruining, A. Mailybaev and D. Marchesin, Filtration combustion in wet porous medium, SIAM Journal on Applied Mathematics, 70 (2009), 1157-1177.

[9]

G. Chapiro, L. Furtado, D. Marchesin and S. Schecter, Numerical analysis of combustion waves and riemann solutions in light porous foam, 2014,, Preprint at http://preprint.impa.br/visualizar?id=5912., (). 

[10]

G. Chapiro, A. A. Mailybaev, A. Souza, D. Marchesin and J. Bruining, Asymptotic approximation of long-time solution for low-temperature filtration combustion, Comput. Geosciences, 16 (2012), 799-808.

[11]

G. Chapiro, D. Marchesin and S. Schecter, Combustion waves and Riemann solutions in light porous foam, Journal of Hyperbolic Differential Equations, 11 (2014), 295-328.

[12]

M. Decker and D. Schult, Dynamics of smoulder waves near extinction, Combustion Theory and Modelling, 8 (2004), 491-512.

[13]

A. Ghazaryan, Y. Latushkin, S. Schecter and A. de Souza, Stability of gasless combustion fronts in one-dimensional solids, Archive for Rational Mechanics and Analysis, 198 (2010), 981-1030.

[14]

L. W. Lake, Enhanced oil recovery, Old Tappan, NJ; Prentice Hall Inc., 1989.

[15]

A. Mailybaev, J. Bruining and D. Marchesin, Analysis of in situ combustion of oil with pyrolysis and vaporization, Combustion and Flame, 158 (2011), 1097-1108.

[16]

A. Mailybaev, D. Marchesin and J. Bruining, Resonance in low-temperature oxidation waves for porous media, SIAM Journal on Mathematical Analysis, 43 (2011), 2230-2252.

[17]

D. Marchesin and S. Schecter, Oxidation heat pulses in two-phase expansive flow in porous media, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 54 (2003), 48-83.

[18]

B. Matkowsky and G. Sivashinsky, Propagation of a pulsating reaction front in solid fuel combustion, SIAM J. Appl. Math., 35 (1978), 465-478.

[19]

J. Mota and S. Schecter, Combustion fronts in a porous medium with two layers, Journal of Dynamics and Differential Equations, 18 (2006), 615-665.

[20]

J. Norbury and A. Stuart, Travelling combustion waves in a porous medium. part i-existence, SIAM J. on Appl. Math., 48 (1988), 155-169.

[21]

J. Norbury and A. Stuart, Travelling combustion waves in a porous medium. part ii-stability, SIAM J. on Appl. Math., 48 (1988), 374-392.

[22]

S. Schecter and D. Marchesin, Geometric singular perturbation analysis of oxidation heat pulses for two-phase flow in porous media. dedicated to constantine dafermos on his 60th birthday, Bulletin of the Brazilian Mathematical Society, 32 (2001), 237-270.

[23]

D. Schult, B. Matkowsky, V. Volpert and A. Fernandez-Pello, Forced forward smolder combustion, Combustion and Flame, 104 (1996), 1-26.

[24]

R. Seydel, Practical bifurcation and stability analysis, Springer, 2010.

[25]

R. Weber, G. Mercer, H. Sidhu and B. Gray, Combustion waves for gases ($Le= 1$) and solids ($Le\to\infty$), Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453 (1997), 1105-1118.

[26]

Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The mathematical theory of combustion and explosion, Consultants Bureau, New York, 1985.

[1]

Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651

[2]

Peng Zhang, Tong Zhang. The Riemann problem for scalar CJ-combustion model without convexity. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 195-206. doi: 10.3934/dcds.1995.1.195

[3]

Zhen-Hui Bu, Zhi-Cheng Wang. Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2395-2430. doi: 10.3934/dcds.2017104

[4]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[5]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure and Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

[6]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[7]

Zhen-Hui Bu, Zhi-Cheng Wang. Global stability of V-shaped traveling fronts in combustion and degenerate monostable equations. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2251-2286. doi: 10.3934/dcds.2018093

[8]

Denghui Wu, Zhen-Hui Bu. Multidimensional stability of pyramidal traveling fronts in degenerate Fisher-KPP monostable and combustion equations. Electronic Research Archive, 2021, 29 (6) : 3721-3740. doi: 10.3934/era.2021058

[9]

Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 809-826. doi: 10.3934/dcds.2009.24.809

[10]

Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193

[11]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations and Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[12]

Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383

[13]

Fathi Dkhil, Angela Stevens. Traveling wave speeds in rapidly oscillating media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 89-108. doi: 10.3934/dcds.2009.25.89

[14]

Chih-Yuan Chen, Shin-Hwa Wang, Kuo-Chih Hung. S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2589-2608. doi: 10.3934/cpaa.2014.13.2589

[15]

Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735

[16]

Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925

[17]

Jérôme Coville, Juan Dávila. Existence of radial stationary solutions for a system in combustion theory. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 739-766. doi: 10.3934/dcdsb.2011.16.739

[18]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[19]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[20]

Konstantina Trivisa. Global existence and asymptotic analysis of solutions to a model for the dynamic combustion of compressible fluids. Conference Publications, 2003, 2003 (Special) : 852-863. doi: 10.3934/proc.2003.2003.852

 Impact Factor: 

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (0)

[Back to Top]