-
Previous Article
An equation unifying both Camassa-Holm and Novikov equations
- PROC Home
- This Issue
-
Next Article
On the properties of solutions set for measure driven differential inclusions
Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape
1. | Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste |
2. | Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France |
References:
[1] |
M. Athanassenas, J. Clutterbuck, A capillarity problem for compressible liquids, Pacific J. Math. 243 (2009), 213-232. |
[2] |
M. Athanassenas, R. Finn, Compressible fluids in a capillary tube, Pacific J. Math. 224 (2004), 201-229. |
[3] |
M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature in $\mathbb R^{n+1}$, Analysis (Munich) 28 (2008), 149-166. |
[4] |
M. Bergner, On the Dirichlet problem for the prescribed mean curvature equation over general domains, Differential Geom. Appl. 27 (2009), 335-343. |
[5] |
D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations 243 (2007), 208-237. |
[6] |
I. Coelho, C. Corsato, P. Omari, A one-dimensional prescribed curvature equation modeling the corneal shape, Bound. Value Probl. 2014, 2014:127, 19 pp..
doi: 10.1186/1687-2770-2014-127. |
[7] |
C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions, preprint (2015), 39 pp., doi: 10.13140/2.1.3837.7766. Available from: https://www.researchgate.net/publication/272826705. |
[8] |
R. Finn, On the equations of capillarity, J. Math. Fluid Mech. 3 (2001), 139-151. |
[9] |
R. Finn, Capillarity problems for compressible fluids, Mem. Differential Equations Math. Phys. 33 (2004), 47-55. |
[10] |
R. Finn, G. Luli, On the capillary problem for compressible fluids, J. Math. Fluid Mech. 9 (2007), 87-103. |
[11] |
T. Marquardt, Remark on the anisotropic prescribed mean curvature equation on arbitrary domains, Math. Z. 264 (2010), 507-511. |
[12] |
F. Obersnel, P. Omari, Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation, Discrete Contin. Dyn. Syst. 33 (2013), 305-320. |
[13] |
W. Okrasiński, L. Pl ociniczak, A nonlinear mathematical model of the corneal shape, Nonlinear Anal. Real World Appl. 13 (2012), 1498-1505. |
[14] |
W. Okrasiński, L. Pl ociniczak, Bessel function model of corneal topography, Appl. Math. Comput. 223 (2013), 436-443. |
[15] |
W. Okrasiński, Ł. Płociniczak, Regularization of an ill-posed problem in corneal topography, Inverse Probl. Sci. Eng. 21 (2013), 1090-1097. |
[16] |
Ł. Płociniczak, G.W.Griffits, W.E.Schiesser, ODE/PDE analysis of corneal curvature, Comput. Biol. Med. 53 (2014), 30-41.
doi: 10.1016/j.compbiomed.2014.07.003. |
[17] |
Ł. Płociniczak, W. Okrasiński, Nonlinear parameter identification in a corneal geometry model, Inverse Probl. Sci. Eng. 23 (2015), 443-456. |
[18] |
Ł. Płociniczak, W. Okrasiński, J.J. Nieto, O. Domínguez, On a nonlinear boundary value problem modeling corneal shape, J. Math. Anal. Appl. 414 (2014), 461-471. |
show all references
References:
[1] |
M. Athanassenas, J. Clutterbuck, A capillarity problem for compressible liquids, Pacific J. Math. 243 (2009), 213-232. |
[2] |
M. Athanassenas, R. Finn, Compressible fluids in a capillary tube, Pacific J. Math. 224 (2004), 201-229. |
[3] |
M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature in $\mathbb R^{n+1}$, Analysis (Munich) 28 (2008), 149-166. |
[4] |
M. Bergner, On the Dirichlet problem for the prescribed mean curvature equation over general domains, Differential Geom. Appl. 27 (2009), 335-343. |
[5] |
D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations 243 (2007), 208-237. |
[6] |
I. Coelho, C. Corsato, P. Omari, A one-dimensional prescribed curvature equation modeling the corneal shape, Bound. Value Probl. 2014, 2014:127, 19 pp..
doi: 10.1186/1687-2770-2014-127. |
[7] |
C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: existence, uniqueness and regularity of solutions, preprint (2015), 39 pp., doi: 10.13140/2.1.3837.7766. Available from: https://www.researchgate.net/publication/272826705. |
[8] |
R. Finn, On the equations of capillarity, J. Math. Fluid Mech. 3 (2001), 139-151. |
[9] |
R. Finn, Capillarity problems for compressible fluids, Mem. Differential Equations Math. Phys. 33 (2004), 47-55. |
[10] |
R. Finn, G. Luli, On the capillary problem for compressible fluids, J. Math. Fluid Mech. 9 (2007), 87-103. |
[11] |
T. Marquardt, Remark on the anisotropic prescribed mean curvature equation on arbitrary domains, Math. Z. 264 (2010), 507-511. |
[12] |
F. Obersnel, P. Omari, Existence, regularity and boundary behaviour of bounded variation solutions of a one-dimensional capillarity equation, Discrete Contin. Dyn. Syst. 33 (2013), 305-320. |
[13] |
W. Okrasiński, L. Pl ociniczak, A nonlinear mathematical model of the corneal shape, Nonlinear Anal. Real World Appl. 13 (2012), 1498-1505. |
[14] |
W. Okrasiński, L. Pl ociniczak, Bessel function model of corneal topography, Appl. Math. Comput. 223 (2013), 436-443. |
[15] |
W. Okrasiński, Ł. Płociniczak, Regularization of an ill-posed problem in corneal topography, Inverse Probl. Sci. Eng. 21 (2013), 1090-1097. |
[16] |
Ł. Płociniczak, G.W.Griffits, W.E.Schiesser, ODE/PDE analysis of corneal curvature, Comput. Biol. Med. 53 (2014), 30-41.
doi: 10.1016/j.compbiomed.2014.07.003. |
[17] |
Ł. Płociniczak, W. Okrasiński, Nonlinear parameter identification in a corneal geometry model, Inverse Probl. Sci. Eng. 23 (2015), 443-456. |
[18] |
Ł. Płociniczak, W. Okrasiński, J.J. Nieto, O. Domínguez, On a nonlinear boundary value problem modeling corneal shape, J. Math. Anal. Appl. 414 (2014), 461-471. |
[1] |
Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 |
[4] |
Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116 |
[5] |
Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari, Alessandro Soranzo. A prescribed anisotropic mean curvature equation modeling the corneal shape: A paradigm of nonlinear analysis. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 213-256. doi: 10.3934/dcdss.2018013 |
[6] |
Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155 |
[7] |
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569 |
[8] |
G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11. |
[9] |
Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 |
[10] |
Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 |
[11] |
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 |
[12] |
Julián López-Gómez. Uniqueness of radially symmetric large solutions. Conference Publications, 2007, 2007 (Special) : 677-686. doi: 10.3934/proc.2007.2007.677 |
[13] |
Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839 |
[14] |
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 |
[15] |
Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 |
[16] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[17] |
Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 |
[18] |
Franco Obersnel, Pierpaolo Omari. On a result of C.V. Coffman and W.K. Ziemer about the prescribed mean curvature equation. Conference Publications, 2011, 2011 (Special) : 1138-1147. doi: 10.3934/proc.2011.2011.1138 |
[19] |
Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure and Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549 |
[20] |
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]