2015, 2015(special): 359-368. doi: 10.3934/proc.2015.0359

Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation

1. 

Department of Mathematics, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, United States

3. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045–7523

4. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-7523

Received  September 2014 Revised  April 2015 Published  November 2015

In the present work, we introduce a new $\mathcal{PT}$-symmetric variant of the Klein-Gordon field theoretic problem. We identify the standing wave solutions of the proposed class of equations and analyze their stability. In particular, we obtain an explicit frequency condition, somewhat reminiscent of the classical Vakhitov-Kolokolov criterion, which sharply separates the regimes of spectral stability and instability. Our numerical computations corroborate the relevant theoretical result.
Citation: Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359
References:
[1]

C. M. Bender, Making Sense of Non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007), 947-1018.

[2]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\mathcal{PT}$ Symmetric Optical Lattices, Phys. Rev. Lett., 100 (2008), 103904; Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Optical Solitons in $\mathcal{PT}$ Periodic Potentials Phys. Rev. Lett., 100 (2008), 030402.

[3]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures, Phys. Rev. A, 82 (2010), 043803.

[4]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of a $\mathcal{PT}$-symmetric potential scattering in a planar slab waveguide, J. Phys. A: Math. Gen., 38 (2005), L171.

[5]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of $\mathcal{PT}$-symmetry breaking in complex optical potentials, Phys. Rev. Lett., 103 (2009), 093902.

[6]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics, Nature Phys., 6 (2010), 192.

[7]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries, Phys. Rev. A, 84 (2011), 040101.

[8]

H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Bypassing the bandwidth theorem with $\mathcal{PT}$ symmetry, Phys. Rev. A, 85 (2012), 062122.

[9]

C. M. Bender, B. J. Berntson, D. Parker and E. Samuel, Observation of $\mathcal{PT}$-phase transition in a simple mechanical system, Am. J. Phys., 81 (2013), 173.

[10]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Paritytime-symmetric whispering-gallery microcavities, Nature Physics, 10 (2014), 394.

[11]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of Asymmetric Transport in Structures with Active Nonlinearities, Phys. Rev. Lett., 110 (2013), 234101.

[12]

A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena, and A. Stefanov, Effects of $\mathcal{PT}$-symmetry in Nonlinear Klein-Gordon Field Theories and Their Solitary Waves, Phys. Rev. E, 88 (2013), 023203.

[13]

A. Demirkaya, M. Stanislavova, A. Stefanov, T. Kapitula, and P. G. Kevrekidis, On the Spectral Stability of Kinks in Some $\mathcal{PT}$-Symmetric Variants of the Classical KleinGordon Field Theories, Studies Appl. Math., (2014), DOI: 10.1111/sapm.12053.

[14]

P. G. Kevrekidis, Variational method for nonconservative field theories: Formulation and two $\mathcal{PT}$-symmetric examples, Phys. Rev. A, 89 (2014), 010102(R).

[15]

J. Cuevas, L. Q. English, P.G. Kevrekidis, and M. Anderson, Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment, Phys. Rev. Lett., 102 (2009), 224101.

[16]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D, 262 (2013), 1-13.

[17]

M. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron., 16 (1973), 783.

[18]

M. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.

[19]

M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.

[20]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc., 290 (1985), 701-710.

show all references

References:
[1]

C. M. Bender, Making Sense of Non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007), 947-1018.

[2]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\mathcal{PT}$ Symmetric Optical Lattices, Phys. Rev. Lett., 100 (2008), 103904; Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, Optical Solitons in $\mathcal{PT}$ Periodic Potentials Phys. Rev. Lett., 100 (2008), 030402.

[3]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures, Phys. Rev. A, 82 (2010), 043803.

[4]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of a $\mathcal{PT}$-symmetric potential scattering in a planar slab waveguide, J. Phys. A: Math. Gen., 38 (2005), L171.

[5]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of $\mathcal{PT}$-symmetry breaking in complex optical potentials, Phys. Rev. Lett., 103 (2009), 093902.

[6]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics, Nature Phys., 6 (2010), 192.

[7]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries, Phys. Rev. A, 84 (2011), 040101.

[8]

H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Bypassing the bandwidth theorem with $\mathcal{PT}$ symmetry, Phys. Rev. A, 85 (2012), 062122.

[9]

C. M. Bender, B. J. Berntson, D. Parker and E. Samuel, Observation of $\mathcal{PT}$-phase transition in a simple mechanical system, Am. J. Phys., 81 (2013), 173.

[10]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Paritytime-symmetric whispering-gallery microcavities, Nature Physics, 10 (2014), 394.

[11]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of Asymmetric Transport in Structures with Active Nonlinearities, Phys. Rev. Lett., 110 (2013), 234101.

[12]

A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena, and A. Stefanov, Effects of $\mathcal{PT}$-symmetry in Nonlinear Klein-Gordon Field Theories and Their Solitary Waves, Phys. Rev. E, 88 (2013), 023203.

[13]

A. Demirkaya, M. Stanislavova, A. Stefanov, T. Kapitula, and P. G. Kevrekidis, On the Spectral Stability of Kinks in Some $\mathcal{PT}$-Symmetric Variants of the Classical KleinGordon Field Theories, Studies Appl. Math., (2014), DOI: 10.1111/sapm.12053.

[14]

P. G. Kevrekidis, Variational method for nonconservative field theories: Formulation and two $\mathcal{PT}$-symmetric examples, Phys. Rev. A, 89 (2014), 010102(R).

[15]

J. Cuevas, L. Q. English, P.G. Kevrekidis, and M. Anderson, Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment, Phys. Rev. Lett., 102 (2009), 224101.

[16]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case, Physica D, 262 (2013), 1-13.

[17]

M. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron., 16 (1973), 783.

[18]

M. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.

[19]

M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.

[20]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc., 290 (1985), 701-710.

[1]

François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations and Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81

[2]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[3]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[4]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[5]

Salvador Cruz-García, Catherine García-Reimbert. On the spectral stability of standing waves of the one-dimensional $M^5$-model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1079-1099. doi: 10.3934/dcdsb.2016.21.1079

[6]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[7]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[8]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure and Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[9]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure and Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[10]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[11]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[12]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[13]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[14]

Yue Zhang, Jian Zhang. Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022007

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737

[17]

Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246

[18]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[19]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[20]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

 Impact Factor: 

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (0)

[Back to Top]