\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Steiner symmetrization for concave semilinear elliptic and parabolic equations and the obstacle problem

Abstract Related Papers Cited by
  • We extend some previous results in the literature on the Steiner rearrangement of linear second order elliptic equations to the semilinear concave parabolic problems and the obstacle problem.
    Mathematics Subject Classification: 35J61, 35J65, 35J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Alvino, J.I. Díaz, P.L. Lions and G.Trombetti, Elliptic Equations and Steiner Symmetrization, Communications on Pure and Applied Mathematics, Vol. XLIX (1996), 217-236.

    [2]

    H. Attouch, H. and A. Damlamian, Problemes d'evolution dans les Hilbert et applications, J. Math. Pures Appl., 54 (1975), 53-74.

    [3]

    C. Bandle, Isoperimetric Inequalities and Applications, Pitman, London, 1980.

    [4]

    P. Benilan, M. Crandall and A. PazyNonlinear evolution equations in Banach spaces. Book in preparation.

    [5]

    H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Notes de Matematica, 5, North-Holland, Amsterdam. 1973.

    [6]

    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.

    [7]

    F. Chiacchio and V.M. Monetti, Comparison results for solutions of elliptic problems via Steiner symmetrization. Differential and Integral Equations 14(11) (2001), 1351-1366.

    [8]

    F. Chiacchio, Steiner symmetrization for an elliptic problem with lower-order terms. Ricerche di Matematica, 53, 1, (2004) 87-106.

    [9]

    F. Chiacchio, Estimates for the first eigenfunction of linear eigenvalue problems via Steiner symmetrization, Publ. Mat., 1 (2009), 47-71.

    [10]

    J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries. Pitman, London, 1985.

    [11]

    J.I. Díaz, Simetrización de problemas parablicos no lineales: Aplicación a ecuaciones de reacción difusión. Memorias de la Real Acad. de Ciencias Exactas, Físicas y Naturales, Tomo XXVII. 1991.

    [12]

    J.I. Díaz and D. Gómez-Castro, On the effectiveness of wastewater cylindrical reactors: an analysis through Steiner symmetrization. Pure and Applied Geophysics. DOI: 10.1007/s00024-015-1124-8 (2015).

    [13]

    V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals, C.R. Acad. Sci. Paris, 236, Série I, (1998) 549-554.

    [14]

    J. Mossino, and J.M. Rakotoson, Isoperimetric inequalities in parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1986), 51-73.

    [15]

    T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in $\mathbb{ R}^{2}$, Differential Integral Equations 24(1/2) (2011), 29-68.

    [16]

    P.-A. Vuillermot, W.F. Wreszinski and V.A.Zagrebnov, A Trotter-Kato Product Formula for a Class of Non-Autonomous Evolution Equations, Trends in Nonlinear Analysis: in Honour of Professor V. Lakshmikantham, Nonlinear Analysis, Theory, Methods and Applications 69 (2008), 1067-1072.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return