\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain

Abstract Related Papers Cited by
  • In this paper we establish the global existence of strong solutions to the three-dimensional compressible magnetohydrodynamic equations in a bounded domain with small initial data. Moreover, we study the low Mach number limit to the corresponding problem.
    Mathematics Subject Classification: Primary: 76W05; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Q. Chen, Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations, Nonlinear Anal. 72(2010) 4438-4451.

    [2]

    C. Dou, S. Jiang and Q. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys. 64(6)(2013) 1661-1678.

    [3]

    C. Dou, Q. Ju, Low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain for all time, Commun. Math. Sci. 12(4)(2014) 661-679.

    [4]

    B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys. 266(2006) 595-629.

    [5]

    J. Fan, W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal.: RWA 10(2009) 392-409.

    [6]

    J. Fan, W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal. 69(2008) 3637-3660.

    [7]

    J. Fan, H. Gao and B. Guo, Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient, Math. Methods Appl. Sci. 34 (2011) 2181-2188.

    [8]

    X. Hu, D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal. 197(2010) 203-238.

    [9]

    X. Hu, D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flow, Commun. Math. Phys. 283(2008) 255-284.

    [10]

    X. Hu, D. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal. 41(2009) 1272-1294.

    [11]

    S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Commun. Math. Phys. 297(2010) 371-400.

    [12]

    S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal. 42 (2010), 2539-2553.

    [13]

    S. Jiang, Q. Ju, F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity 25 (2012), no. 5, 1351-1365.

    [14]

    S. Jiang, Q. Ju, F. Li and Z. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math. 259 (2014), 384-420.

    [15]

    F. Li, H. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Royal Soc. Edinburgh 141A(2011) 109-126.

    [16]

    A. Suen, D. Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal. 205 (2012), no. 1, 27-58.

    [17]

    A. I. Vol'pert, S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR.-Sb. 16(1972) 517-544.

    [18]

    Y. Yang, X. Gu and C. Dou, Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows, Nonlinear Anal. 95 (2014), 23-37.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return