[1]
|
S. Agmon, The $L_p$ approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405-448.
|
[2]
|
C. O. Alves and F. J. S. A. Corrêa., On the existence of positive solutions for a class of singular systems involving quasilinear operators, Appl. Math. and Computation, 185 (2007), 727-736.
|
[3]
|
C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems via Galerkin methods, Function spaces, differential operators and nonlinear analysis (Teistungen, 2001), 47-57, Birkhaüser, Basel, (2003).
|
[4]
|
A. Alvino, V. Ferone and G. Trombetti, On the best constant in a HardySobolev inequality, Appl. Anal., 85 (2006), 171-180.
|
[5]
|
E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities, Electron. J. Differential Equations (2005), 20 pp.
|
[6]
|
F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 1 (1996), 219-240.
|
[7]
|
J. F. Bonder and J. D. Rossi, A fourth order elliptic equation with nonlinear boundary conditions, Nonlinear Anal., 49 (2002), 1037-1047.
|
[8]
|
P. C. Carrião, L. F. O. Faria and O.H. Miyagaki, A biharmonic elliptic problem with dependence on the gradient and the Laplacian, Electron. J. Differential Equations (2009), 12 pp.
|
[9]
|
S. Chandrasekhar, An introduction to the study of stellar structure, Dover Publications, Inc., New York, 1957.
|
[10]
|
Q- Choi and T. Jung, Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation, Acta Math. Sci., 19 (1999), 361-374.
|
[11]
|
Y. S. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents, J. Differential Equations, 246 (2009), 216-234.
|
[12]
|
D. G. de Figueiredo, Semilinear elliptic systems: a survey of superlinear problems, Resenhas 2 (1996), 373-391.
|
[13]
|
Y. Deng and G. Wang, On inhomogeneous biharmonic equations involving critical exponents, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 925-946.
|
[14]
|
W. Fulks and J.S. Maybee, A singular non-linear equation, Osaka Math. J., 12 (1960), 1-19.
|
[15]
|
M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318.
|
[16]
|
Y. G. Gu, Y. B. Deng and X. J. Wang, Existence of nontrivial solutions for critical semilinear biharmonic equations, Systems Sci. Math. Sci., 7 (1994), 140-152.
|
[17]
|
G. L. Hernandez and Y. Choi, Existence of solutions in a singular biharmonic nonlinear problem, Proc. Edinburgh Math. Soc. (2), 36 (1993), 537-546.
|
[18]
|
T. Jung and Q- Choi, Existence of nontrivial solutions of the nonlinear biharmonic system, Korean J. Math., 16 (2008), 135-143.
|
[19]
|
O. Kavian, Inegalité de Hardy-Sobolev et applications, Theése de Doctorate de 3eme cycle, Université de Paris, VI (1978).
|
[20]
|
S. Kesavan, Topics in functional analysis and application, John Wiley & Sons, Inc., New York, 1989.
|
[21]
|
A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.
|
[22]
|
T. F. Ma, Existence results for a model of nonlinear beam on elastic bearings, Appl. Math. Lett., 13 (2000), 11-15.
|
[23]
|
A. M. Micheletti, A. Pistoia and C. Saccon, Three solutions of a fourth order elliptic problem via variational theorems of mixed type, Appl. Anal., 75 (2000), 43-59.
|
[24]
|
R. C. A. M. Van der Vorst, Fourth-order elliptic equations with critical growth, C. R. Acad. Sci. Paris Sr. I Math., 320 (1995), 295-299.
|
[25]
|
R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2(\Omega) \cap H_0^1(\Omega)$ into $L^{2N/N-4}(\Omega)$, Differential Integral Equations, 6 (1993), 259-276.
|
[26]
|
P. Villaggio, Mathematical models for elastic structures, Cambridge University Press, Cambridge, 1997.
|
[27]
|
W. Wang, A. Zang and P. Zhao, Multiplicity of solutions for a class of fourth elliptic equations, Nonlinear Anal., 70 (2009), 4377-4385.
|
[28]
|
X. Z. Zeng and Y. B. Deng, Existence of multiple solutions for a semilinear biharmonic equation with critical exponent, Acta Math. Sci. Ser. A Chin. Ed., 20 (2000), 547-554.
|
[29]
|
J. H. Zhang and S. J. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems, Nonlinear Anal., 60 (2005), 221-230.
|