
Previous Article
High order periodic impulsive problems
 PROC Home
 This Issue

Next Article
A general approach to identification problems and applications to partial differential equations
Existence of positive solutions of a superlinear boundary value problem with indefinite weight
1.  SISSA  International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy 
References:
show all references
References:
[1] 
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411423. doi: 10.3934/cpaa.2003.2.411 
[2] 
Feliz Minhós, T. Gyulov, A. I. Santos. Existence and location result for a fourth order boundary value problem. Conference Publications, 2005, 2005 (Special) : 662671. doi: 10.3934/proc.2005.2005.662 
[3] 
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete and Continuous Dynamical Systems  B, 2014, 19 (8) : 25692580. doi: 10.3934/dcdsb.2014.19.2569 
[4] 
Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416423. doi: 10.3934/proc.2009.2009.416 
[5] 
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319328. doi: 10.3934/cpaa.2004.3.319 
[6] 
Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete and Continuous Dynamical Systems  S, 2018, 11 (2) : 257277. doi: 10.3934/dcdss.2018014 
[7] 
Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 17651783. doi: 10.3934/cpaa.2018084 
[8] 
ChanGyun Kim, YongHoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834843. doi: 10.3934/proc.2011.2011.834 
[9] 
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615620. doi: 10.3934/proc.2015.0615 
[10] 
Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 46554666. doi: 10.3934/cpaa.2020131 
[11] 
Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431444. doi: 10.3934/dcds.1998.4.431 
[12] 
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121131. doi: 10.3934/ipi.2008.2.121 
[13] 
John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundaryvalue problem. Conference Publications, 2009, 2009 (Special) : 276285. doi: 10.3934/proc.2009.2009.276 
[14] 
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337344. doi: 10.3934/proc.2005.2005.337 
[15] 
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete and Continuous Dynamical Systems  S, 2008, 1 (1) : 8997. doi: 10.3934/dcdss.2008.1.89 
[16] 
John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269275. doi: 10.3934/proc.2009.2009.269 
[17] 
Zhiming Guo, ZhiChun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a nonlocal differential equation with homogeneous Dirichlet boundary conditionA nonmonotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 18251838. doi: 10.3934/cpaa.2012.11.1825 
[18] 
Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via NehariPohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 38573877. doi: 10.3934/dcds.2015.35.3857 
[19] 
Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12 (2) : 259275. doi: 10.3934/nhm.2017011 
[20] 
John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291299. doi: 10.3934/proc.2013.2013.291 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]