\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$

Abstract Related Papers Cited by
  • This paper is concerned with global existence and boundedness of classical solutions to the quasilinear fully parabolic Keller-Segel system $u_t = \nabla \cdot(D(u)\nabla u) -\nabla \cdot (v^{-1}S(u)\nabla v)$, $v_t= \Delta v-v+u$. In [7,4], global existence and boundedness were established in the system without $v^{-1}$. In this paper the signal-dependent sensitivity $v^{-1}$ is taken into account via the Weber-Fechner law. A uniform-in-time estimate for $v$ obtained in [2] defeats the singularity of $v^{-1}$.
    Mathematics Subject Classification: Primary: 35B35, 35B45; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Ciéslak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.

    [2]

    K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.

    [3]

    T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.

    [4]

    S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.

    [5]

    E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability , J. Theor. Biol., 26 (1970), 399-415.

    [6]

    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.

    [7]

    Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.

    [8]

    M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.

    [9]

    M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.

    [10]

    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return