-
Abstract
This paper is concerned with global existence and boundedness of classical solutions to the quasilinear fully parabolic
Keller-Segel system
$u_t
= \nabla \cdot(D(u)\nabla u)
-\nabla \cdot (v^{-1}S(u)\nabla v)$,
$v_t= \Delta v-v+u$.
In [7,4], global existence and boundedness were established in the system without $v^{-1}$.
In this paper the signal-dependent sensitivity $v^{-1}$ is taken into account via the Weber-Fechner law.
A uniform-in-time estimate for $v$ obtained in [2] defeats the singularity of $v^{-1}$.
Mathematics Subject Classification: Primary: 35B35, 35B45; Secondary: 92C17.
\begin{equation} \\ \end{equation}
-
References
[1]
|
T. Ciéslak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.
|
[2]
|
K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
|
[3]
|
T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
|
[4]
|
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
|
[5]
|
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability , J. Theor. Biol., 26 (1970), 399-415.
|
[6]
|
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Vol. 23, Providence, RI, 1968.
|
[7]
|
Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
|
[8]
|
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.
|
[9]
|
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
|
[10]
|
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
|
-
Access History