-
Previous Article
Estimates for solutions of nonautonomous semilinear ill-posed problems
- PROC Home
- This Issue
-
Next Article
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$
Remark on a semirelativistic equation in the energy space
1. | Department of Pure and Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 |
2. | Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 |
3. | Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan |
References:
[1] |
J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys., 53 (2012), 062301, 19. |
[2] |
Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074. |
[3] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705. |
[4] |
K. Fujiwara, S. Machihara and T. Ozawa, On a system of semirelativistic equations in the energy space, Commun. Pure Appl. Anal., 14(2015), 1343-1355. |
[5] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. |
[6] |
V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066. |
[7] |
J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129. |
[8] |
E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64. |
[9] |
L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. |
[10] |
M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci., 37 (2001), 255-293. |
[11] |
T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal., 14 (1990), 765-769. |
[12] |
T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. |
[13] |
T. Ozawa and N. Visciglia, An improvement on the brezis-gallout technique for 2d nls and 1d half-wave equation,, , ().
|
[14] |
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France, 91 (1963), 129-135. |
[15] |
M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783. |
show all references
References:
[1] |
J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys., 53 (2012), 062301, 19. |
[2] |
Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074. |
[3] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705. |
[4] |
K. Fujiwara, S. Machihara and T. Ozawa, On a system of semirelativistic equations in the energy space, Commun. Pure Appl. Anal., 14(2015), 1343-1355. |
[5] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., 32 (1979), 1-32. |
[6] |
V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032-1066. |
[7] |
J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal., 209 (2013), 61-129. |
[8] |
E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64. |
[9] |
L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988. |
[10] |
M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci., 37 (2001), 255-293. |
[11] |
T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal., 14 (1990), 765-769. |
[12] |
T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. |
[13] |
T. Ozawa and N. Visciglia, An improvement on the brezis-gallout technique for 2d nls and 1d half-wave equation,, , ().
|
[14] |
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France, 91 (1963), 129-135. |
[15] |
M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783. |
[1] |
Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556 |
[2] |
Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147 |
[3] |
Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123 |
[4] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[5] |
Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83 |
[6] |
Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905 |
[7] |
Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307 |
[8] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[9] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[10] |
Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241 |
[11] |
A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469 |
[12] |
Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 |
[13] |
Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863 |
[14] |
Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035 |
[15] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[16] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[17] |
Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 |
[18] |
Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321 |
[19] |
Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033 |
[20] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]