[1]
|
K. A. Ames and R. J. Hughes, Structural stability for ill-posed problems in Banach space, Semigroup Forum, 70 (2005), 127-145.
|
[2]
|
N. Boussetila and F. Rebbani, A modified quasi-reversibility method for a class of ill-posed Cauchy problems, Georgian Math J., 14 (2007), 627-642.
|
[3]
|
B. Campbell Hetrick and R. J. Hughes, Continuous dependence on modeling for nonlinear ill-posed problems, J. Math. Anal. Appl., 349 (2009), 420-435.
|
[4]
|
G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems, Electron. J. Diff. Eqns., 1994 (1994), 1-9.
|
[5]
|
N. Dunford and J. Schwartz, Linear Operators, Part II, John Wiley and Sons, Inc., New York, 1957.
|
[6]
|
M. A. Fury, Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space, Discrete and Continuous Dynamical Systems, 2013 (2013), Issue special, 259-272.
|
[7]
|
M. A. Fury, Modified quasi-reversibility method for nonautonomous semilinear problems, Electron. J. Diff. Eqns., Conf. 20 (2013), 65-78.
|
[8]
|
M. Fury and R. J. Hughes, Continuous dependence of solutions for ill-posed evolution problems, Electron. J. Diff. Eqns., Conf. 19 (2010), 99-121.
|
[9]
|
Y. Huang, Modified quasi-reversibility method for final value problems in Banach spaces, J. Math. Anal. Appl. 340 (2008) 757-769.
|
[10]
|
Y. Huang and Q. Zheng, Regularization for a class of ill-posed Cauchy problems, Proc. Amer. Math. Soc., 133-10 (2005), 3005-3012.
|
[11]
|
R. Lattes and J. L. Lions, The Method of Quasireversibility, Applications to Partial Differential Equations, Amer. Elsevier, New York, 1969.
|
[12]
|
N. T. Long and A. P. N. Dinh, Approximation of a parabolic non-linear evolution equation backwards in time, Inverse Problems, 10 (1994), 905-914.
|
[13]
|
I. V. Mel'nikova, General theory of the ill-posed Cauchy problem, J. Inverse and Ill-posed Problems, 3 (1995), 149-171.
|
[14]
|
K. Miller, Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems, in Symposium on Non-Well-Posed Problems and Logarithmic Convexity (Heriot-Watt Univ., Edinburgh, 1972), 161-176, Springer Lecture Notes in Mathematics, Volume 316, Springer, Berlin, 1973.
|
[15]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
|
[16]
|
R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl., 47 (1974), 563-572.
|
[17]
|
D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems, Electron. J. Diff. Eqns., 2006 (2006), 1-10.
|
[18]
|
D. D. Trong and N. H. Tuan, Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems, Electron. J. Diff. Eqns., 2008 (2008), 1-12.
|
[19]
|
N. H. Tuan and D. D. Trong, On a backward parabolic problem with local Lipschitz source, J. Math. Anal. Appl. 414 (2014), 678-692.
|