# American Institute of Mathematical Sciences

2015, 2015(special): 515-524. doi: 10.3934/proc.2015.0515

## Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin

 1 Institut für Mathematik und Rechneranwendung (LRT-1), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany, Germany

Received  September 2014 Revised  June 2015 Published  November 2015

We consider a numerical study of an optimal control problem for a truck with a fluid basin, which leads to an optimal control problem with a coupled system of partial differential equations (PDEs) and ordinary differential equations (ODEs). The motion of the fluid in the basin is modeled by the nonlinear hyperbolic Saint-Venant (shallow water) equations while the vehicle dynamics are described by the equations of motion of a mechanical multi-body system. These equations are fully coupled through boundary conditions and force terms. We pursue a first-discretize-then-optimize approach using a Lax-Friedrich scheme. To this end a reduced optimization problem is obtained by a direct shooting approach and solved by a sequential quadratic programming method. For the computation of gradients we employ an efficient adjoint scheme. Numerical case studies for optimal braking maneuvers of the truck and the basin filled with a fluid are presented.
Citation: Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515
##### References:
 [1] J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136, American Mathematical Society, Providence, RI, 2007. [2] F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid,, in Proc. of the 5th European Control Conf. (ECC 99), (). [3] L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. [4] M. Gerdts, Optimal Control of ODEs and DAEs, de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012. [5] M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation), Universität der Bundeswehr München, Neubiberg/München, 2010. [6] M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11. [7] M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270. [8] D. Kroener, Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester / B. G. Teubner, Stuttgart, 1997. [9] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 36 (2002), 397-425. [10] P. D. Lax, Hyperbolic Partial Differential Equations, with an appendix by Cathleen S. Morawetz, Courant Lecture Notes in Mathematics 14, New York University, Courant Institute of Mathematical Sciences, New York / American Mathematical Society, Providence, RI, 2006. [11] C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow, reprinted edition, Kluwer Academic Publishers, Dordrecht , 1998.

show all references

##### References:
 [1] J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136, American Mathematical Society, Providence, RI, 2007. [2] F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid,, in Proc. of the 5th European Control Conf. (ECC 99), (). [3] L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. [4] M. Gerdts, Optimal Control of ODEs and DAEs, de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012. [5] M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation), Universität der Bundeswehr München, Neubiberg/München, 2010. [6] M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11. [7] M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270. [8] D. Kroener, Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester / B. G. Teubner, Stuttgart, 1997. [9] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 36 (2002), 397-425. [10] P. D. Lax, Hyperbolic Partial Differential Equations, with an appendix by Cathleen S. Morawetz, Courant Lecture Notes in Mathematics 14, New York University, Courant Institute of Mathematical Sciences, New York / American Mathematical Society, Providence, RI, 2006. [11] C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow, reprinted edition, Kluwer Academic Publishers, Dordrecht , 1998.
 [1] Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031 [2] Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89 [3] Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control and Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003 [4] Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733 [5] Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917 [6] Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177 [7] Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations and Control Theory, 2022, 11 (1) : 199-224. doi: 10.3934/eect.2020108 [8] Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435 [9] Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313 [10] Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491 [11] Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control and Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014 [12] Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501 [13] E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189 [14] Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193 [15] Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285 [16] François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739 [17] Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1 [18] George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 [19] Mihaela Negreanu, J. Ignacio Tello. On a Parabolic-ODE system of chemotaxis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 279-292. doi: 10.3934/dcdss.2020016 [20] Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

Impact Factor: