
Previous Article
The Nehari solutions and asymmetric minimizers
 PROC Home
 This Issue

Next Article
Real cocycles of pointdistal minimal flows
Optimal control for an epidemic in populations of varying size
1.  Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204 
2.  Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992 
3.  Centre de Recerca Matemática, Campus de Bellaterra, Edifici C, 08193 Barcelona 
References:
show all references
References:
[1] 
Roberta Fabbri, Russell Johnson, Carmen Núñez. On the Yakubovich frequency theorem for linear nonautonomous control processes. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 677704. doi: 10.3934/dcds.2003.9.677 
[2] 
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509533. doi: 10.3934/mcrf.2018021 
[3] 
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navierstokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347371. doi: 10.3934/eect.2020110 
[4] 
Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control and Related Fields, 2019, 9 (3) : 495507. doi: 10.3934/mcrf.2019022 
[5] 
Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 15451558. doi: 10.3934/dcds.2019067 
[6] 
Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 35553565. doi: 10.3934/dcds.2013.33.3555 
[7] 
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D NavierStokes equations with mixed controlstate constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 6180. doi: 10.3934/mcrf.2012.2.61 
[8] 
Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619630. doi: 10.3934/naco.2012.2.619 
[9] 
Joaquim P. Mateus, Paulo Rebelo, Silvério Rosa, César M. Silva, Delfim F. M. Torres. Optimal control of nonautonomous SEIRS models with vaccination and treatment. Discrete and Continuous Dynamical Systems  S, 2018, 11 (6) : 11791199. doi: 10.3934/dcdss.2018067 
[10] 
Hancheng Guo, Jie Xiong. A secondorder stochastic maximum principle for generalized meanfield singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451473. doi: 10.3934/mcrf.2018018 
[11] 
Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161173. doi: 10.3934/naco.2013.3.161 
[12] 
María Anguiano, Tomás Caraballo. Asymptotic behaviour of a nonautonomous Lorenz84 system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 39013920. doi: 10.3934/dcds.2014.34.3901 
[13] 
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855859. doi: 10.3934/cpaa.2006.5.855 
[14] 
XiaoLi Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021059 
[15] 
Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 26872716. doi: 10.3934/dcds.2018113 
[16] 
Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485503. doi: 10.3934/dcds.2011.29.485 
[17] 
Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initialfinal problem for nonautonomous evolutionary Sobolev type equation. Evolution Equations and Control Theory, 2019, 8 (3) : 473488. doi: 10.3934/eect.2019023 
[18] 
Birgit Jacob, Hafida Laasri. Wellposedness of infinitedimensional nonautonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385409. doi: 10.3934/eect.2020072 
[19] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[20] 
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77101. doi: 10.3934/dcds.1995.1.77 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]