2015, 2015(special): 579-587. doi: 10.3934/proc.2015.0579

On reachability analysis for nonlinear control systems with state constraints

1. 

N.N.Krasovskii Institute of Mathematics and Mechanics, S.Kovalevskaya str., 16, 620099, Ekaterinburg, Russian Federation

Received  September 2014 Revised  February 2015 Published  November 2015

The paper is devoted to the problem of approximating reachable sets of a nonlinear control system with state constraints given as a solution set for a nonlinear inequality. A procedure to remove state constraints is proposed; this procedure consists in replacing a primary system by an auxiliary system without state constraints. The equations of the auxiliary system depend on a small parameter. It is shown that a reachable set of the primary system may be approximated in the Hausdorff metric by reachable sets of the auxiliary system when the small parameter tends to zero. The estimates of the rate of convergence are given.
Citation: Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579
References:
[1]

SIAM J. Optim., 18 (2007), 1004-1026.  Google Scholar

[2]

SIAM J. Control Optim., 48 (2010), 4664-4679.  Google Scholar

[3]

Applied Mathematics, 3 (2012), 1593-1597. Google Scholar

[4]

J.Differential Integral Equations, 12 (1999), 471-497.  Google Scholar

[5]

J. Optim. Theory Appl., 104 (2000), 21-40.  Google Scholar

[6]

Sbornik Mathematics, 196 (2005), 513-539. Google Scholar

[7]

Proceedings of the Steklov Institute of Mathematics, 275, Suppl.1 (2011), 57-67. Google Scholar

[8]

Automation and Remote Control, 73 (2012), 450-461.  Google Scholar

[9]

Proceedings of the Steklov Institute of Mathematics 287 (2014), 77-92. Google Scholar

[10]

Studies in Mathematics and its Applications, Amsterdam : North-Holland, 1979.  Google Scholar

[11]

Automation and Remote Control, 72 (2011), 1841-1851.  Google Scholar

[12]

Differentsial'nye Uravneniya, 23 (1987), 1303-1315.  Google Scholar

[13]

J. Optim. Theory Appl., 128 (2006), 499-521.  Google Scholar

[14]

SCFA. Boston: Birkhäuser, 1997.  Google Scholar

[15]

New York: Wiley, 1967.  Google Scholar

[16]

GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103-135  Google Scholar

[17]

Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67-78.  Google Scholar

[18]

System and Control Letters, 13 (1989), 117-123.  Google Scholar

[19]

SIAM J. Control and Optim. 43 (2004), 697-707.  Google Scholar

show all references

References:
[1]

SIAM J. Optim., 18 (2007), 1004-1026.  Google Scholar

[2]

SIAM J. Control Optim., 48 (2010), 4664-4679.  Google Scholar

[3]

Applied Mathematics, 3 (2012), 1593-1597. Google Scholar

[4]

J.Differential Integral Equations, 12 (1999), 471-497.  Google Scholar

[5]

J. Optim. Theory Appl., 104 (2000), 21-40.  Google Scholar

[6]

Sbornik Mathematics, 196 (2005), 513-539. Google Scholar

[7]

Proceedings of the Steklov Institute of Mathematics, 275, Suppl.1 (2011), 57-67. Google Scholar

[8]

Automation and Remote Control, 73 (2012), 450-461.  Google Scholar

[9]

Proceedings of the Steklov Institute of Mathematics 287 (2014), 77-92. Google Scholar

[10]

Studies in Mathematics and its Applications, Amsterdam : North-Holland, 1979.  Google Scholar

[11]

Automation and Remote Control, 72 (2011), 1841-1851.  Google Scholar

[12]

Differentsial'nye Uravneniya, 23 (1987), 1303-1315.  Google Scholar

[13]

J. Optim. Theory Appl., 128 (2006), 499-521.  Google Scholar

[14]

SCFA. Boston: Birkhäuser, 1997.  Google Scholar

[15]

New York: Wiley, 1967.  Google Scholar

[16]

GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103-135  Google Scholar

[17]

Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67-78.  Google Scholar

[18]

System and Control Letters, 13 (1989), 117-123.  Google Scholar

[19]

SIAM J. Control and Optim. 43 (2004), 697-707.  Google Scholar

[1]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation Algorithm for Spherical $ k $-Means Problem with Penalty. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021067

[2]

Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027

[3]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[4]

Amanda E. Diegel. A C0 interior penalty method for the Cahn-Hilliard equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021030

[5]

Kuei-Hu Chang. A novel risk ranking method based on the single valued neutrosophic set. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021065

[6]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[7]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[8]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[9]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[10]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[11]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[12]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[13]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[15]

Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033

[16]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[17]

Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021050

[18]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[19]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[20]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

 Impact Factor: 

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]