2015, 2015(special): 615-620. doi: 10.3934/proc.2015.0615

Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition

1. 

Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, Kentucky 40475, United States, United States

Received  September 2014 Revised  May 2015 Published  November 2015

In this paper, we apply Krasnosel'skii's cone expansion and compression fixed point theorem to show the existence of at least one positive solution to the nonlinear fractional boundary value problem $D^\alpha_{0^+} u + a(t)f(u)=0$, $0 < t < 1$, $1 < \alpha \le 2$, satisfying boundary conditions $u(0)=D^\beta_{0^+} u(1)=0$, $0\le\beta\le1$.
Citation: Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615
References:
[1]

B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory, 13 (2012), 329-336.

[2]

Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl., 311 (2005), 495-505.

[3]

V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations, J. Math. Anal. Appl., 302 (2004), 56-64.

[4]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin, 2010.

[5]

P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 855-871.

[6]

P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations, Commun. Appl. Anal., 19 (2015), 453-462.

[7]

J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators, J. Nonlinear Funct. Anal., 2014 (2014), 1-23.

[8]

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., 17 (2014), 855-871.

[9]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Math. Stud., vol. 204, Elsevier Science B.V., Amsterdam, 2006.

[10]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong, A Pergamon Press Book, MacMillan, New York, 1964.

[11]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.

[12]

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.

[13]

G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument, Adv. Difference Equ., 2011 (2011), Article ID 2.

[14]

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 1 (2013), 12-22.

[15]

S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Electron. J. Diff. Eqns., 2006 (2006), 1-12.

show all references

References:
[1]

B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory, 13 (2012), 329-336.

[2]

Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl., 311 (2005), 495-505.

[3]

V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations, J. Math. Anal. Appl., 302 (2004), 56-64.

[4]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin, 2010.

[5]

P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 855-871.

[6]

P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations, Commun. Appl. Anal., 19 (2015), 453-462.

[7]

J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators, J. Nonlinear Funct. Anal., 2014 (2014), 1-23.

[8]

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., 17 (2014), 855-871.

[9]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Math. Stud., vol. 204, Elsevier Science B.V., Amsterdam, 2006.

[10]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong, A Pergamon Press Book, MacMillan, New York, 1964.

[11]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.

[12]

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.

[13]

G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument, Adv. Difference Equ., 2011 (2011), Article ID 2.

[14]

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 1 (2013), 12-22.

[15]

S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Electron. J. Diff. Eqns., 2006 (2006), 1-12.

[1]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[2]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[4]

Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014

[5]

Gennaro Infante. Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 691-699. doi: 10.3934/dcdsb.2019261

[6]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[7]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[8]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[9]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[10]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[11]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[12]

Ricardo Almeida, M. Luísa Morgado. Optimality conditions involving the Mittag–Leffler tempered fractional derivative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 519-534. doi: 10.3934/dcdss.2021149

[13]

Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007

[14]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[15]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[16]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[17]

Yan Deng, Junfang Zhao, Baozeng Chu. Symmetry of positive solutions for systems of fractional Hartree equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3085-3096. doi: 10.3934/dcdss.2021079

[18]

Ran Zhuo, Yan Li. Regularity and existence of positive solutions for a fractional system. Communications on Pure and Applied Analysis, 2022, 21 (1) : 83-100. doi: 10.3934/cpaa.2021168

[19]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[20]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041

 Impact Factor: 

Metrics

  • PDF downloads (277)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]