2015, 2015(special): 670-677. doi: 10.3934/proc.2015.0670

Linear model of traffic flow in an isolated network

1. 

Grupo de Dinámica No Lineal. Universidad Pontificia Comillas de Madrid, C/Alberto Agulilera 23, 28015 Madrid

2. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received  September 2014 Revised  April 2015 Published  November 2015

We obtain a mathematical linear model which describes automatic operation of the traffic of material objects in a network. Existence and global solutions is obtained for such model. A related model which used outdated information is shown to collapse in finite time.
Citation: Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670
References:
[1]

J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, (1977).

[2]

J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Springer-Verlag, New York, (2002).

[3]

A. Jiménez-Casas and A. Rodríguez-Bernal, A Model of Traffic Flow in a Network, Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, 4 (2014), 193-200, ISBN 978-3-319-06952-4.

[4]

A. Jiménez-Casas and A. Rodríguez-Bernal, General model of traffic flow in an isolated network,, in preparation., (). 

[5]

B. Sridhar and P. K. Menon, Comparison of Linear Dynamic Models for Air Traffic Flow Management, Proceedings of the 16th IFAC World Congress, (2005), 1962-1968.

[6]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the Performance of Four Eulerian Network Flow Models for Strategic Air Traffic Network Flow Models for Strategic Air Traffic Management, Networks and Heterogeneous Media, 2(4) (2007), 569-594.

show all references

References:
[1]

J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, (1977).

[2]

J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions, Springer-Verlag, New York, (2002).

[3]

A. Jiménez-Casas and A. Rodríguez-Bernal, A Model of Traffic Flow in a Network, Advances in Differential Equations and Applications, SEMA/SIMAI Springer Series, 4 (2014), 193-200, ISBN 978-3-319-06952-4.

[4]

A. Jiménez-Casas and A. Rodríguez-Bernal, General model of traffic flow in an isolated network,, in preparation., (). 

[5]

B. Sridhar and P. K. Menon, Comparison of Linear Dynamic Models for Air Traffic Flow Management, Proceedings of the 16th IFAC World Congress, (2005), 1962-1968.

[6]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the Performance of Four Eulerian Network Flow Models for Strategic Air Traffic Network Flow Models for Strategic Air Traffic Management, Networks and Heterogeneous Media, 2(4) (2007), 569-594.

[1]

Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks and Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127

[2]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[3]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[4]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[5]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[6]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[7]

Gabriella Bretti, Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 379-394. doi: 10.3934/dcdss.2014.7.379

[8]

Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9 (3) : 519-552. doi: 10.3934/nhm.2014.9.519

[9]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control and Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[10]

Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717

[11]

Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

[12]

Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599

[13]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[14]

G. C. Yang, K. Q. Lan. Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2465-2495. doi: 10.3934/cpaa.2013.12.2465

[15]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[16]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[17]

Alessia Marigo. Optimal traffic distribution and priority coefficients for telecommunication networks. Networks and Heterogeneous Media, 2006, 1 (2) : 315-336. doi: 10.3934/nhm.2006.1.315

[18]

Ye Sun, Daniel B. Work. Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13 (2) : 261-295. doi: 10.3934/nhm.2018012

[19]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[20]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

 Impact Factor: 

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (1)

[Back to Top]