\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces

Abstract Related Papers Cited by
  • This paper is concerned with the Cauchy problem for the complex Ginzburg-Landau type equation $u_t = (\delta _{1}+i\delta _{2})\Delta u -i\mu |u| ^{2\sigma}u$ in $(0,\infty)\times\mathbb{R}^d$, where $\delta_{1}>0$, $\delta_{2}, \mu \in \mathbb{R}$ and $d\in\mathbb{N}$. Existence and uniqueness of spatially periodic solutions to the problem are established in a space which corresponds to the Sobolev space on the $d$-dimensional torus when $0<\sigma<\infty$ ($d=1, 2$) and $0<\sigma<1/(d-2)$ ($d \ge 3$). The result improves the case $p=2$ of the result in the space $W^{1,p}$ given by Gao-Wang [2,Theorem 1] in which it is assumed that $d < p$ and $\sigma < p/d$.
    Mathematics Subject Classification: Primary: 35K55; Secondary: 35Q55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.

    [2]

    H. Gao and X. Wang, On the global existence and small dispersion limit for a class of complex Ginzburg-Landau equations, Math. Methods Appl. Sci. 32 (2009), 1396-1414.

    [3]

    J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Phys. D 95 (1996), 191-228.

    [4]

    R. Hempel and J. Voigt, On the $L_p$-spectrum of Schrödinger operators, J. Math. Anal. Appl. 121 (1987), 138-159.

    [5]

    C. Huang and B. Wang, Inviscid limit for the energy-critical complex Ginzburg-Landau equation, J. Funct. Anal. 255 (2008), 681-725.

    [6]

    V. A Kozlov, V. G. Maz'ya and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs 52, American Mathematical Society, Providence, RI, 1997.

    [7]

    C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem, Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), 141-190, Lectures in Appl. Math., 31, Amer. Math. Soc., Providence, RI, 1996.

    [8]

    T. Ogawa and T. Yokota, Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain, Comm. Math. Phys. 245 (2004), 105-121.

    [9]

    N. Okazawa and T. Yokota, Global existence and smoothing effect for the complex Ginzburg-Landau equation with $p$-Laplacian, J. Differential Equations 182 (2002), 541-576.

    [10]

    N. Okazawa and T. Yokota, Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation, Discrete Contin. Dyn. Syst. 28 (2010), 311-341.

    [11]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return