2015, 2015(special): 793-800. doi: 10.3934/proc.2015.0793

Potential estimates and applications to elliptic equations

1. 

Mathematics and Mechanics Institute, Nat. Acad. Sci. of Azerbaijan, Az1001, 10, Istiglaliyyat str, Baku, Azerbaidjan

2. 

Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy, Italy

Received  September 2014 Revised  March 2015 Published  November 2015

In this paper we prove a potential type estimate for the solutions of some classes of Dirichlet problems associated to certain non divergence structure elliptic equations with smooth datum. As a consequence of our potential bound, we can get an a priori estimate for the solutions of the same kind of Dirichlet problem, but with less regular datum.
Citation: Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793
References:
[1]

R. A. Amanov and F. I. Mamedov, On the regularity of the solutions of degenerate elliptic equations in divergence form, Math. Notes, 83 (2008), 3-13.

[2]

M. Borsuk and V. Kondratiev, Elliptic boundary value problems of second order in piecewise smooth domains, North-Holland Mathematical Library, Elsevier, 2006.

[3]

F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.

[4]

F. Chiarenza, M. Frasca and P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.

[5]

G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Unione Mat. Ital. A, 10 (1996), 409-420.

[6]

D. Gilbarg andN. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[7]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968.

[8]

N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

[9]

F. I. Mamedov, Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form, Math. Notes, 53 (1993), 50-58.

[10]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients, Mathematical Research, 109, Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.

[11]

C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura Appl., 63 (1963), 353-386.

[12]

S. G. Samko, Hypersingular integrals and their applications, Analytical Methods and Special Functions, 5. Taylor & Francis, Ltd., London, 2002.

[13]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.

[14]

E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.

[15]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.

show all references

References:
[1]

R. A. Amanov and F. I. Mamedov, On the regularity of the solutions of degenerate elliptic equations in divergence form, Math. Notes, 83 (2008), 3-13.

[2]

M. Borsuk and V. Kondratiev, Elliptic boundary value problems of second order in piecewise smooth domains, North-Holland Mathematical Library, Elsevier, 2006.

[3]

F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.

[4]

F. Chiarenza, M. Frasca and P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.

[5]

G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Unione Mat. Ital. A, 10 (1996), 409-420.

[6]

D. Gilbarg andN. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[7]

O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968.

[8]

N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

[9]

F. I. Mamedov, Regularity of solutions of linear and quasilinear equations of elliptic type in divergence form, Math. Notes, 53 (1993), 50-58.

[10]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients, Mathematical Research, 109, Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.

[11]

C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Ann. Mat. Pura Appl., 63 (1963), 353-386.

[12]

S. G. Samko, Hypersingular integrals and their applications, Analytical Methods and Special Functions, 5. Taylor & Francis, Ltd., London, 2002.

[13]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives. Theory and applications, translated from the 1987 Russian original, Gordon and Breach Science Publishers, Yverdon, 1993.

[14]

E. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.

[15]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.

[1]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[2]

Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865

[3]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[4]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[5]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[6]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148

[7]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[8]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[9]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[10]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[11]

Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103

[12]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[13]

Sallah Eddine Boutiah, Abdelaziz Rhandi, Cristian Tacelli. Kernel estimates for elliptic operators with unbounded diffusion, drift and potential terms. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 803-817. doi: 10.3934/dcds.2019033

[14]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations and Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[15]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[16]

Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067

[17]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[18]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4461-4476. doi: 10.3934/dcds.2021043

[19]

Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

[20]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

 Impact Factor: 

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

[Back to Top]