2015, 2015(special): 851-860. doi: 10.3934/proc.2015.0851

On higher order nonlinear impulsive boundary value problems

1. 

Departamento de Matemática. Universidade de Évora, Centro de Investigação em Matemática e Aplicaçoes da U.E. (CIMA-UE), Rua Romão Ramalho, 59. 7000-671 Évora

2. 

Centro de Investigação em Matematica e Aplicações (CIMA-UE), Instituto de Investigação e Formacão Avançada, Universidade de Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

Received  July 2014 Revised  November 2014 Published  November 2015

This work studies some two point impulsive boundary value problems composed by a fully differential equation, which higher order contains an increasing homeomorphism, by two point boundary conditions and impulsive effects. We point out that the impulsive conditions are given via multivariate generalized functions, including impulses on the referred homeomorphism. The method used apply lower and upper solutions technique together with fixed point theory. Therefore we have not only the existence of solutions but also the localization and qualitative data on their behavior. Moreover a Nagumo condition will play a key role in the arguments.
Citation: Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851
References:
[1]

R. Agarwal, D. O'Regan, Multiple nonnegative solutions for second order impulsive diferential equations, Appl. Math. Comput. 155 (2000) 51-59.

[2]

P. Chen, X. Tang, Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems, Appl. Math. Comput. 218 (2012) 1775-11789.

[3]

J. Fialho and F. Minhós, High Order Boundary Value Problems: Existence, Localization and Multiplicity Results, Mathematics Research Developments, Nova Science Publishers, Inc. New York, 2014 ISBN: 978-1-63117-707-1.

[4]

J. R. Graef, L. Kong and F. Minhós, Higher order boundary value problems with phi-Laplacian and functional boundary conditions, Comp. Math. Appl., 61 (2011) 236-249.

[5]

M. R.Grossinho, F. Minhós and A.I. Santos, A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition, Nonlinear Anal., 70 (2009) 4027-4038.

[6]

X. Hao, L. Liu and Y. WU, Positive solutions for nth-order singular nonlocal boundary value problems, Boubd. Value Probl. (2007) 10, Article ID 74517.

[7]

V. Lakshmikantham, D. Baĭnov and P. Simeonov, Theory of impulsive differential equations. Series in Modern Applied Mathematics, 6. World Scientific Publishing Co., Inc., 1989.

[8]

X. Liu and D. Guo, Method of upper and lower solutions for second-order impulsive integro-differential equations in a Banach space, Comput. Math. Appl., 38 (1999), 213-223.

[9]

Y. Liu and D. O'Regan, Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1769-1775.

[10]

B. Liu and J. Yu, Existence of solution for m-point boundary value problems of second-order differential systems with impulses, Appl. Math. Comput., 125, (2002), 155-175

[11]

R. Ma, B. Yang and Z. Wang, Positive periodic solutions of first-order delay differential equations with impulses, Appl. Math. Comput. 219 (2013) 6074-6083.

[12]

J. Nieto and R. López, Boundary value problems for a class of impulsive functional equations, Comput. Math. Appl. 55 (2008) 2715-2731

[13]

J. Nieto and D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. RWA, (2009), 680-690.

[14]

A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

[15]

Y. Tian and W. Ge, Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72, (2010), 277-287.

[16]

J. Xiao, J. Nieto and Z. Luo, Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, Communications in Nonlinear Science and Numerical Simulation, 17, (2012), 426-432.

[17]

X. Zhang, M. Feng and W. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces, J. Comput. Appl. Math, 233, (2010), 1915-1926 .

show all references

References:
[1]

R. Agarwal, D. O'Regan, Multiple nonnegative solutions for second order impulsive diferential equations, Appl. Math. Comput. 155 (2000) 51-59.

[2]

P. Chen, X. Tang, Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems, Appl. Math. Comput. 218 (2012) 1775-11789.

[3]

J. Fialho and F. Minhós, High Order Boundary Value Problems: Existence, Localization and Multiplicity Results, Mathematics Research Developments, Nova Science Publishers, Inc. New York, 2014 ISBN: 978-1-63117-707-1.

[4]

J. R. Graef, L. Kong and F. Minhós, Higher order boundary value problems with phi-Laplacian and functional boundary conditions, Comp. Math. Appl., 61 (2011) 236-249.

[5]

M. R.Grossinho, F. Minhós and A.I. Santos, A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition, Nonlinear Anal., 70 (2009) 4027-4038.

[6]

X. Hao, L. Liu and Y. WU, Positive solutions for nth-order singular nonlocal boundary value problems, Boubd. Value Probl. (2007) 10, Article ID 74517.

[7]

V. Lakshmikantham, D. Baĭnov and P. Simeonov, Theory of impulsive differential equations. Series in Modern Applied Mathematics, 6. World Scientific Publishing Co., Inc., 1989.

[8]

X. Liu and D. Guo, Method of upper and lower solutions for second-order impulsive integro-differential equations in a Banach space, Comput. Math. Appl., 38 (1999), 213-223.

[9]

Y. Liu and D. O'Regan, Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1769-1775.

[10]

B. Liu and J. Yu, Existence of solution for m-point boundary value problems of second-order differential systems with impulses, Appl. Math. Comput., 125, (2002), 155-175

[11]

R. Ma, B. Yang and Z. Wang, Positive periodic solutions of first-order delay differential equations with impulses, Appl. Math. Comput. 219 (2013) 6074-6083.

[12]

J. Nieto and R. López, Boundary value problems for a class of impulsive functional equations, Comput. Math. Appl. 55 (2008) 2715-2731

[13]

J. Nieto and D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. RWA, (2009), 680-690.

[14]

A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

[15]

Y. Tian and W. Ge, Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72, (2010), 277-287.

[16]

J. Xiao, J. Nieto and Z. Luo, Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, Communications in Nonlinear Science and Numerical Simulation, 17, (2012), 426-432.

[17]

X. Zhang, M. Feng and W. Ge, Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces, J. Comput. Appl. Math, 233, (2010), 1915-1926 .

[1]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[2]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[3]

Jehad O. Alzabut. A necessary and sufficient condition for the existence of periodic solutions of linear impulsive differential equations with distributed delay. Conference Publications, 2007, 2007 (Special) : 35-43. doi: 10.3934/proc.2007.2007.35

[4]

Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89-110. doi: 10.3934/dcds.2013.33.89

[5]

Monica Motta, Caterina Sartori. Generalized solutions to nonlinear stochastic differential equations with vector--valued impulsive controls. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 595-613. doi: 10.3934/dcds.2011.29.595

[6]

Yu Guo, Xiao-Bao Shu, Qianbao Yin. Existence of solutions for first-order Hamiltonian random impulsive differential equations with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4455-4471. doi: 10.3934/dcdsb.2021236

[7]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[8]

Alberto Cabada, João Fialho, Feliz Minhós. Non ordered lower and upper solutions to fourth order problems with functional boundary conditions. Conference Publications, 2011, 2011 (Special) : 209-218. doi: 10.3934/proc.2011.2011.209

[9]

Matheus C. Bortolan, José Manuel Uzal. Pullback attractors to impulsive evolution processes: Applications to differential equations and tube conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2791-2826. doi: 10.3934/dcds.2020150

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[11]

Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4737-4754. doi: 10.3934/dcdsb.2020122

[12]

João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217

[13]

Luisa Malaguti, Cristina Marcelli. Existence of bounded trajectories via upper and lower solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 575-590. doi: 10.3934/dcds.2000.6.575

[14]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[15]

Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1947-1955. doi: 10.3934/dcdss.2020152

[16]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[17]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[18]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[19]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[20]

Teresa Faria, Rubén Figueroa. Positive periodic solutions for systems of impulsive delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022070

 Impact Factor: 

Metrics

  • PDF downloads (243)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]