\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Remarks on a dispersive equation in de Sitter spacetime

Abstract Related Papers Cited by
  • Some nonlinear Schrödinger equations are derived from the nonrelativistic limit of nonlinear Klein-Gordon equations in de Sitter spacetime. Time local solutions for the Cauchy problem are considered in Sobolev spaces for power type nonlinear terms. The roles of spatial expansion and contraction on the problem are studied.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35L70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Banica, The nonlinear Schrödinger equation on hyperbolic space, Comm. Partial Differential Equations, 32 (2007), no. 10-12, 1643-1677.

    [2]

    D. Baskin, A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces, J. Funct. Anal., 259 (2010), no. 7, 1673-1719.

    [3]

    T. Cazenave, "Semilinear Schrödinger equations,'' Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.

    [4]

    G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3 (1997), no. 3, 207-238.

    [5]

    J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), no. 1, 50-68.

    [6]

    A. D. Ionescu, B. Pausader and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces, Anal. PDE, 5 (2012), no. 4, 705-746.

    [7]

    J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma, Phys. Fluids, 20 (1977), 1176-1179.

    [8]

    M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime, J. Math. Anal. Appl., 410 (2014), no. 1, 445-454.

    [9]

    M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Rev. Math. Phys., 9 (1997), no. 3, 397-410.

    [10]

    T. Tao, "Nonlinear dispersive equations. Local and global analysis," CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. xvi+373.

    [11]

    Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), no. 1, 115-125.

    [12]

    Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), no. 1, 186-188.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return