[1]
|
V. Banica, The nonlinear Schrödinger equation on hyperbolic space, Comm. Partial Differential Equations, 32 (2007), no. 10-12, 1643-1677.
|
[2]
|
D. Baskin, A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces, J. Funct. Anal., 259 (2010), no. 7, 1673-1719.
|
[3]
|
T. Cazenave, "Semilinear Schrödinger equations,'' Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.
|
[4]
|
G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3 (1997), no. 3, 207-238.
|
[5]
|
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), no. 1, 50-68.
|
[6]
|
A. D. Ionescu, B. Pausader and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces, Anal. PDE, 5 (2012), no. 4, 705-746.
|
[7]
|
J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma, Phys. Fluids, 20 (1977), 1176-1179.
|
[8]
|
M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime, J. Math. Anal. Appl., 410 (2014), no. 1, 445-454.
|
[9]
|
M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces, Rev. Math. Phys., 9 (1997), no. 3, 397-410.
|
[10]
|
T. Tao, "Nonlinear dispersive equations. Local and global analysis," CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. xvi+373.
|
[11]
|
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), no. 1, 115-125.
|
[12]
|
Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), 11 (1984), no. 1, 186-188.
|