Citation: |
[1] |
M. Nowak and R. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000, ISBN: 9780198504177. |
[2] |
S. Pankavich, The effects of latent infection on the dynamics of HIV, Differential Equations and Dynamical Systems, (2015), doi: 10.1007/s12591-014-0234-6. |
[3] |
C. Parkinson and S. Pankavich, Mathematical Analysis of an in-host Model of Viral Dynamics with Spatial Heterogeneity, submitted. |
[4] |
A. Perelson, D. Kirschner, and R. Boer, Dynamics of HIV Infection of $CD4^+$ T cells, Math. Biosci., 114 (1993), 81-125. |
[5] |
A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41 (1999), 3-44. |
[6] |
A. Perelson and R. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biology, 11 (2013), 96. |
[7] |
P. Roemer, E. Jones, M. Raghupathi, and S. Pankavich, Analysis and Simulation of the three-component model of HIV dynamics, SIAM Undergraduate Research Online, 7 (2014), 89-106. |
[8] |
L. Rong, Z. Feng, and A. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol., 69 (2007), 2027-2060. |
[9] |
L. Rong and A. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, Journal of Theoretical Biology, 260 (2009), 308-331. |
[10] |
L. Rong and A. Perelson, Modeling Latently Infected Cell Activation: Viral and Latent Reservoir Persistence, and Viral Blips in HIV-infected Patients on Potent Therapy, PLoS Computational Biology, 5 (2009), doi: 10.1371/journal.pcbi.1000533. |
[11] |
R. Shonkwiler and J. Herod, An Introduction with Maple and Matlab, in Undergraduate Texts in Mathematics: Mathematical Biology, Springer, New York, 2009. |