2015, 2015(special): 936-944. doi: 10.3934/proc.2015.0936

Optimal design of sensors for a damped wave equation

1. 

CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris

2. 

Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France, F-75005, Paris

Received  September 2014 Revised  January 2015 Published  November 2015

In this paper we model and solve the problem of shaping and placing in an optimal way sensors for a wave equation with constant damping in a bounded open connected subset $\Omega$ of $\mathbb{R}^n$. Sensors are modeled by subdomains of $\Omega$ of a given measure $L|\Omega|$, with $0 < L < 1$. We prove that, if $L$ is close enough to $1$, then the optimal design problem has a unique solution, which is characterized by a finite number of low frequency modes. In particular the maximizing sequence built from spectral approximations is stationary.
Citation: Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936
References:
[1]

G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565-3579. Google Scholar

[2]

A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm, Chemical Engineering Science, 61 (2006), 7351-7367. Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), no. 5, 1024-1065. Google Scholar

[4]

J.C. Bellido and A. Donoso, An optimal design problem in wave propagation, J. Optim. Theory Appl., 134 (2007), 339-352. Google Scholar

[5]

N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), no. 2, 227-251. Google Scholar

[6]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), no. 7, 749-752. Google Scholar

[7]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), no. 3, 449-475. Google Scholar

[8]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), 16 (2014), no. 1, 1-30. Google Scholar

[9]

P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string, Syst. Cont. Letters, 48 (2003), 199-209. Google Scholar

[10]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349.   Google Scholar

[11]

K. Morris, Linear-quadratic optimal actuator location, IEEE Trans. Automat. Control, 56 (2011), no. 1, 113-124. Google Scholar

[12]

R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3), Proc. Camb. Phil. Soc., 26, (1930) 337-357, 458-474, 28 (1932), 190-205. Google Scholar

[13]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data, Discrete Cont. Dynam. Syst., 35 (2015), no. 12, 6133-6153. Google Scholar

[14]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097-1126. Google Scholar

[15]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), no. 3, 514-544. Google Scholar

[16]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains, to appear in J. Eur. Math. Soc., 2015. Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., 216 (2015), no. 3, 921-981. Google Scholar

[18]

O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), no. 1806, 1001-1019. Google Scholar

[19]

M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, Switzerland, 2009. Google Scholar

[20]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes, Int. J. Appl. Math. Comput. Sci., 20 (2010), no. 3, 459-481. Google Scholar

[21]

A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems, J. Process Control, 10 (2000), 291-300. Google Scholar

show all references

References:
[1]

G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565-3579. Google Scholar

[2]

A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm, Chemical Engineering Science, 61 (2006), 7351-7367. Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), no. 5, 1024-1065. Google Scholar

[4]

J.C. Bellido and A. Donoso, An optimal design problem in wave propagation, J. Optim. Theory Appl., 134 (2007), 339-352. Google Scholar

[5]

N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), no. 2, 227-251. Google Scholar

[6]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation], C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), no. 7, 749-752. Google Scholar

[7]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., 173 (2008), no. 3, 449-475. Google Scholar

[8]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), 16 (2014), no. 1, 1-30. Google Scholar

[9]

P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string, Syst. Cont. Letters, 48 (2003), 199-209. Google Scholar

[10]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349.   Google Scholar

[11]

K. Morris, Linear-quadratic optimal actuator location, IEEE Trans. Automat. Control, 56 (2011), no. 1, 113-124. Google Scholar

[12]

R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3), Proc. Camb. Phil. Soc., 26, (1930) 337-357, 458-474, 28 (1932), 190-205. Google Scholar

[13]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data, Discrete Cont. Dynam. Syst., 35 (2015), no. 12, 6133-6153. Google Scholar

[14]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097-1126. Google Scholar

[15]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation, J. Fourier Anal. Appl., 19 (2013), no. 3, 514-544. Google Scholar

[16]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains, to appear in J. Eur. Math. Soc., 2015. Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., 216 (2015), no. 3, 921-981. Google Scholar

[18]

O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), no. 1806, 1001-1019. Google Scholar

[19]

M. Tucsnak and G. Weiss, Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, Switzerland, 2009. Google Scholar

[20]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes, Int. J. Appl. Math. Comput. Sci., 20 (2010), no. 3, 459-481. Google Scholar

[21]

A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems, J. Process Control, 10 (2000), 291-300. Google Scholar

[1]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[2]

V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611-616. doi: 10.3934/cpaa.2006.5.611

[3]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[4]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[5]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[6]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[7]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[8]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[9]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[10]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[11]

Pengyan Ding, Zhijian Yang. Attractors of the strongly damped Kirchhoff wave equation on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (2) : 825-843. doi: 10.3934/cpaa.2019040

[12]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[13]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[14]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[15]

Pedro Freitas. The linear damped wave equation, Hamiltonian symmetry, and the importance of being odd. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 635-640. doi: 10.3934/dcds.1998.4.635

[16]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[17]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[18]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[19]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[20]

Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3227-3250. doi: 10.3934/dcds.2016.36.3227

 Impact Factor: 

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]