2015, 2015(special): 965-973. doi: 10.3934/proc.2015.0965

Exact lumping of feller semigroups: A $C^{\star}$-algebras approach

1. 

Max-Planck-Institut for Mathematics in the Sciences, Inselstrasse 22, Leipzig, D-04103, Germany

Received  September 2014 Revised  December 2014 Published  November 2015

In this note we analyze a particular exact lumping of Feller semigroups in the context of $C^{\star}$-algebras, in order to pass from a space of functions defined on a locally compact Hausdorff space ${X}$ to a space of functions defined on a closed subspace ${\mathscr{C}}\subset X$. We want our reduction to preserve the essential properties of the Feller semigroup.
Citation: Lavinia Roncoroni. Exact lumping of feller semigroups: A $C^{\star}$-algebras approach. Conference Publications, 2015, 2015 (special) : 965-973. doi: 10.3934/proc.2015.0965
References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986, x+460 pp.  Google Scholar

[2]

F. Atay and L. Roncoroni, Exact Lumpability of Linear Evolution Equations, preprint, MPI-MIS, 109, 2013. Google Scholar

[3]

R. M. Blumenthal and R.k. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, 29, Academic Press, New York-London, 1968, x+313 pp.  Google Scholar

[4]

H. Brezis, Analyse fonctionnelle, (French) [Functional analysis] Thorie et applications. [Theory and applications] Collection Mathmatiques Appliques pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, Paris, 1983, xiv+234 pp.  Google Scholar

[5]

N. L. Carothers, A Short Course on Banach Space Theory, London Mathematical Society Student Texts, 64, Cambridge University Press, Cambridge, 2005, xii+184 pp.  Google Scholar

[6]

J. A. Van Casteren, Markov Processes, Feller Semigroups and Evolution Equations, Series on Concrete and Applicable Mathematics, 12, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011, xviii+805 pp.  Google Scholar

[7]

P. G. Coxson, Lumpability and Observability of Linear Systems, Journal of Mathematical Analysis and Applications, 99 (1984) 435-446.  Google Scholar

[8]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolutions Equations, With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000, xxii+586 pp.  Google Scholar

[9]

L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear algebra approach, Linear algebra and its Applications 404 (2005), 85-117.  Google Scholar

[10]

E. Kaniuth, A Course in Commutative Banach algebras, Graduate Texts in Mathematics, 246, Springer, New York, 2009. xii+353 pp.  Google Scholar

[11]

G. Li and H. Rabitz, A general analysis of exact lumping in chemical kinetics, Chemical Engineering Science, 44 No.6 (1989), 1413-1430. Google Scholar

[12]

G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989. xiv+277 pp.  Google Scholar

[13]

W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Dsseldorf-Johannesburg, 1973. xiii+397 pp.  Google Scholar

[14]

J. Toth, G. Li, H. Rabitz and A. S. Tomlin, The effect of lumping and expanding on kinetic differential equations, SIAM J. Appl. Math. 57 No.6 (1997), 1531-1556.  Google Scholar

[15]

J. Wei and J. C. W. Kuo, A Lumping Analysis in Monomolecular Reaction Systems, Ind. Eng. Chem. Fundamen., 8 (1969), 124-133 (DOI: 10.1021/i160029a020) Google Scholar

[16]

Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces,, Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations, ().   Google Scholar

[17]

J. H. Zwart, Geometric Theory for Infinite Dimensional Systems, Lecture Notes in Control and Information Sciences, 115. Springer-Verlag, Berlin, 1989. viii+156 pp.  Google Scholar

show all references

References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986, x+460 pp.  Google Scholar

[2]

F. Atay and L. Roncoroni, Exact Lumpability of Linear Evolution Equations, preprint, MPI-MIS, 109, 2013. Google Scholar

[3]

R. M. Blumenthal and R.k. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, 29, Academic Press, New York-London, 1968, x+313 pp.  Google Scholar

[4]

H. Brezis, Analyse fonctionnelle, (French) [Functional analysis] Thorie et applications. [Theory and applications] Collection Mathmatiques Appliques pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, Paris, 1983, xiv+234 pp.  Google Scholar

[5]

N. L. Carothers, A Short Course on Banach Space Theory, London Mathematical Society Student Texts, 64, Cambridge University Press, Cambridge, 2005, xii+184 pp.  Google Scholar

[6]

J. A. Van Casteren, Markov Processes, Feller Semigroups and Evolution Equations, Series on Concrete and Applicable Mathematics, 12, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011, xviii+805 pp.  Google Scholar

[7]

P. G. Coxson, Lumpability and Observability of Linear Systems, Journal of Mathematical Analysis and Applications, 99 (1984) 435-446.  Google Scholar

[8]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolutions Equations, With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000, xxii+586 pp.  Google Scholar

[9]

L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear algebra approach, Linear algebra and its Applications 404 (2005), 85-117.  Google Scholar

[10]

E. Kaniuth, A Course in Commutative Banach algebras, Graduate Texts in Mathematics, 246, Springer, New York, 2009. xii+353 pp.  Google Scholar

[11]

G. Li and H. Rabitz, A general analysis of exact lumping in chemical kinetics, Chemical Engineering Science, 44 No.6 (1989), 1413-1430. Google Scholar

[12]

G. K. Pedersen, Analysis Now, Graduate Texts in Mathematics, 118, Springer-Verlag, New York, 1989. xiv+277 pp.  Google Scholar

[13]

W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Dsseldorf-Johannesburg, 1973. xiii+397 pp.  Google Scholar

[14]

J. Toth, G. Li, H. Rabitz and A. S. Tomlin, The effect of lumping and expanding on kinetic differential equations, SIAM J. Appl. Math. 57 No.6 (1997), 1531-1556.  Google Scholar

[15]

J. Wei and J. C. W. Kuo, A Lumping Analysis in Monomolecular Reaction Systems, Ind. Eng. Chem. Fundamen., 8 (1969), 124-133 (DOI: 10.1021/i160029a020) Google Scholar

[16]

Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces,, Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations, ().   Google Scholar

[17]

J. H. Zwart, Geometric Theory for Infinite Dimensional Systems, Lecture Notes in Control and Information Sciences, 115. Springer-Verlag, Berlin, 1989. viii+156 pp.  Google Scholar

[1]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations & Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[2]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[3]

Hernan R. Henriquez. Generalized solutions for the abstract singular Cauchy problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 955-976. doi: 10.3934/cpaa.2009.8.955

[4]

Mohammed AL Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems and applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2259-2270. doi: 10.3934/dcdss.2020187

[5]

Flank D. M. Bezerra, Alexandre N. Carvalho, Marcelo J. D. Nascimento. Fractional approximations of abstract semilinear parabolic problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4221-4255. doi: 10.3934/dcdsb.2020095

[6]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[7]

Benzion Shklyar. Exact null-controllability of interconnected abstract evolution equations with unbounded input operators. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021124

[8]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[9]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[10]

Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2387-2397. doi: 10.3934/dcdss.2020427

[11]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[12]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[13]

Mohammed Al Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems for infinite interval case. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3285-3304. doi: 10.3934/dcdss.2020240

[14]

Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Exact multiplicity of stationary limiting problems of a cell polarization model. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5627-5655. doi: 10.3934/dcds.2016047

[15]

Yanqing Wang, Donghui Yang, Jiongmin Yong, Zhiyong Yu. Exact controllability of linear stochastic differential equations and related problems. Mathematical Control & Related Fields, 2017, 7 (2) : 305-345. doi: 10.3934/mcrf.2017011

[16]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[17]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[18]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[19]

Xiaoling Sun, Hongbo Sheng, Duan Li. An exact algorithm for 0-1 polynomial knapsack problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 223-232. doi: 10.3934/jimo.2007.3.223

[20]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]