# American Institute of Mathematical Sciences

2015, 2015(special): 974-980. doi: 10.3934/proc.2015.0974

## A model of malignant gliomas throug symmetry reductions

 1 Dpto. de Matemáticas, Universidad de Cádiz, Polígono del Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain, Spain, Spain

Received  September 2014 Revised  May 2015 Published  November 2015

A glioma is a kind of tumor that starts in the brain or spine. The most common site of gliomas is in the brain. Most of the mathematical models in use for malignant gliomas are based on a simple reaction-diffusion equation: the Fisher equation [3]. A nonlinear wave model describing the fundamental features of these tumors has been introduced in [5], by V.M. Pérez and collaborators. In this work, we study this model from the point of view of the theory of symmetry reductions in partial differential equations. We obtain the classical symmetries admitted by the system, then, we use the transformations groups to reduce the equations to ordinary differential equations. Some exact solutions are derived from the solutions of a simple non-linear ordinary differential equation.
Citation: María Rosa, María S. Bruzón, M. L. Gandarias. A model of malignant gliomas throug symmetry reductions. Conference Publications, 2015, 2015 (special) : 974-980. doi: 10.3934/proc.2015.0974
##### References:
 [1] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations Applied Mathematical Sciences, 154 Springer (2002). [2] N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos. Solitons and Fractals, 24 (2005), 1217-1231. [3] J. D. Murray, Mathematical Biology, Third Edition, Springer-Verlag, New York Berlin Heidelberg, 2002. [4] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1993. [5] V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, and L. Pérez-Romasanta, Bright solitary waves in malignant gliomas, Physical Review E., 84 (2011), 021921. [6] K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, Journal of the Neurological Sciences, 216 (2003), 1-10. [7] N. K. Vitanov, Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176-1185. [8] E. Yombaa, Exact Solitary Waves of the Fisher Equation, IMA Preprint Series, (2005), 2061.

show all references

##### References:
 [1] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations Applied Mathematical Sciences, 154 Springer (2002). [2] N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos. Solitons and Fractals, 24 (2005), 1217-1231. [3] J. D. Murray, Mathematical Biology, Third Edition, Springer-Verlag, New York Berlin Heidelberg, 2002. [4] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1993. [5] V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, and L. Pérez-Romasanta, Bright solitary waves in malignant gliomas, Physical Review E., 84 (2011), 021921. [6] K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, Journal of the Neurological Sciences, 216 (2003), 1-10. [7] N. K. Vitanov, Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176-1185. [8] E. Yombaa, Exact Solitary Waves of the Fisher Equation, IMA Preprint Series, (2005), 2061.
 [1] María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 [2] Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 [3] Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415 [4] Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082 [5] Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 [6] Daniel G. Alfaro Vigo, Amaury C. Álvarez, Grigori Chapiro, Galina C. García, Carlos G. Moreira. Solving the inverse problem for an ordinary differential equation using conjugation. Journal of Computational Dynamics, 2020, 7 (2) : 183-208. doi: 10.3934/jcd.2020008 [7] Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147 [8] Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268 [9] Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709 [10] Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 [11] Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 [12] Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 [13] Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 [14] Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 [15] Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 [16] Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 [17] Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 [18] Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 [19] Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 [20] Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043

Impact Factor: