-
Previous Article
Noether's theorem for higher-order variational problems of Herglotz type
- PROC Home
- This Issue
-
Next Article
A model of malignant gliomas throug symmetry reductions
Symmetries and solutions of a third order equation
1. | Instituto de Matemática, Estatística e Computação Científica, IMECC - UNICAMP, Sérgio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil |
2. | Centro de Matemática, Computação e Cognição, Universidade Federal do ABC - UFABC, Rua Santa Adélia, 166, Bairro Bangu, 09.210 -- 170, Santo André, SP |
References:
show all references
References:
[1] |
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 |
[2] |
Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear third-order equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1223-1236. doi: 10.3934/cpaa.2014.13.1223 |
[3] |
Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 |
[4] |
Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221 |
[5] |
Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415 |
[6] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[7] |
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337 |
[8] |
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89 |
[9] |
John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342 |
[10] |
María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222 |
[11] |
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 |
[12] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[13] |
M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181 |
[14] |
Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017 |
[15] |
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515 |
[16] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
[17] |
Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez. Local convexity for second order differential equations on a Lie algebroid. Journal of Geometric Mechanics, 2021, 13 (3) : 477-499. doi: 10.3934/jgm.2021021 |
[18] |
M . Bartušek, John R. Graef. Some limit-point/limit-circle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 31-38. doi: 10.3934/proc.2001.2001.31 |
[19] |
Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381 |
[20] |
Regilene Oliveira, Cláudia Valls. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1821-1834. doi: 10.3934/dcdsb.2020004 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]