
Previous Article
Noether's theorem for higherorder variational problems of Herglotz type
 PROC Home
 This Issue

Next Article
A model of malignant gliomas throug symmetry reductions
Symmetries and solutions of a third order equation
1.  Instituto de Matemática, Estatística e Computação Científica, IMECC  UNICAMP, Sérgio Buarque de Holanda, 651, 13083859, Campinas, SP, Brazil 
2.  Centro de Matemática, Computação e Cognição, Universidade Federal do ABC  UFABC, Rua Santa Adélia, 166, Bairro Bangu, 09.210  170, Santo André, SP 
References:
show all references
References:
[1] 
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear thirdorder ordinary differential equations. Discrete and Continuous Dynamical Systems  S, 2018, 11 (4) : 655666. doi: 10.3934/dcdss.2018040 
[2] 
Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear thirdorder equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 12231236. doi: 10.3934/cpaa.2014.13.1223 
[3] 
Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries  A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312321. doi: 10.3934/proc.2011.2011.312 
[4] 
Juan BelmonteBeitia, Víctor M. PérezGarcía, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems  B, 2008, 9 (2) : 221233. doi: 10.3934/dcdsb.2008.9.221 
[5] 
Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems  S, 2020, 13 (10) : iii. doi: 10.3934/dcdss.2020415 
[6] 
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323335. doi: 10.3934/jgm.2011.3.323 
[7] 
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337344. doi: 10.3934/proc.2005.2005.337 
[8] 
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete and Continuous Dynamical Systems  S, 2008, 1 (1) : 8997. doi: 10.3934/dcdss.2008.1.89 
[9] 
John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342350. doi: 10.3934/proc.2003.2003.342 
[10] 
MaríaSantos Bruzón, Elena Recio, TamaraMaría Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems  S, 2020, 13 (10) : 26912701. doi: 10.3934/dcdss.2020222 
[11] 
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141148. doi: 10.3934/jgm.2020007 
[12] 
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517526. doi: 10.3934/jgm.2015.7.517 
[13] 
M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Secondorder evolution equations. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 42394247. doi: 10.3934/dcds.2017181 
[14] 
Michael Hochman. Smooth symmetries of $\times a$invariant sets. Journal of Modern Dynamics, 2018, 13: 187197. doi: 10.3934/jmd.2018017 
[15] 
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for secondorder differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213222. doi: 10.3934/proc.2015.0213 
[16] 
Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez. Local convexity for second order differential equations on a Lie algebroid. Journal of Geometric Mechanics, 2021, 13 (3) : 477499. doi: 10.3934/jgm.2021021 
[17] 
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$laplacian. Conference Publications, 2011, 2011 (Special) : 515522. doi: 10.3934/proc.2011.2011.515 
[18] 
M . Bartušek, John R. Graef. Some limitpoint/limitcircle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 3138. doi: 10.3934/proc.2001.2001.31 
[19] 
Jie Shen, LiLian Wang. Laguerre and composite LegendreLaguerre DualPetrovGalerkin methods for thirdorder equations. Discrete and Continuous Dynamical Systems  B, 2006, 6 (6) : 13811402. doi: 10.3934/dcdsb.2006.6.1381 
[20] 
Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 19571974. doi: 10.3934/dcds.2019082 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]