2015, 2015(special): 1000-1008. doi: 10.3934/proc.2015.1000

Absorbing boundary conditions for the Westervelt equation

1. 

Imperial College London, Department of Mathematics, London, SW7 2AZ, United Kingdom

2. 

Alpen-Adria-Universität Klagenfurt, Institute of Mathematics, Klagenfurt, A-9020, Austria

Received  September 2014 Revised  December 2014 Published  November 2015

The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation.
Citation: Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000
References:
[1]

P. J. Westervelt, Parametric acoustic array, J. Acoust. Soc. Am., 35 (1963), 535-537.

[2]

M. Averkiou and R. Cleveland, Modeling of an electrohydraulic lithotripter with the KZK equation, J. Acoust. Soc. Am., 106 (1999), 102-112.

[3]

C. Le Floch and M. Fink, Ultrasonic mapping of temperature in hyperthermia: the thermal lens effect, in Proceedings of 1997 IEEE Ultrasonics Symposium, (1997), 1301-1304.

[4]

C. Simon, P. VanBaren and E. Ebbini, Two-dimensional temperature estimation using diagnostic ultrasound, IEEE Trans. Ultrason. Ferr., 45 (1998), 1088-1099.

[5]

M. Pernot, K. Waters, J. Bercoff, M. Tanter and M. Fink, Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation, in Proceedings of 2002 IEEE Ultrasonics Symposium, (2002), 1447-1450.

[6]

C. Le Floch, M. Tanter and M. Fink, Self-defocusing in ultrasonic hyperthermia: Experiment and simulation, Appl. Phys. Lett., 74 (1999), 3062-3064.

[7]

I. Hallaj, R. Cleveland and K. Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am., 109 (2001), 2245-2253.

[8]

C. Connor and K. Hynynen, Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol., 47 (2002), 1911-1928.

[9]

S. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27 (1998), 465-532.

[10]

T. Hagstrom, New results on absorbing layers and radiation boundary conditions, in Topics in computational wave propagation. Direct and inverse problems. Lect. Notes Comput. Sci. Eng. (M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne), Springer-Verlag, (2003), 1-42.

[11]

D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave motion, 39 (2004), 319-326.

[12]

D. Givoli, Computational absorbing boundaries, in Computational Acoustics of Noise Propagation in Fluids (S. Marburg and B. Nolte), Springer-Verlag, (2008), 145-166.

[13]

B. Engquist and A. Majda, Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations, Comm. Pure Appl. Math., 32 (1979), 313-357.

[14]

E. Bécache, D. Givoli and T. Hagstrom, High-order absorbing boundary conditions for anisotropic and convective wave equations, J. Comput. Phys., 229 (2010), 1099-1129.

[15]

G. W. Hedstrom, Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems, J. Comput. Phys., 30 (1979), 222-237.

[16]

J. Szeftel, Absorbing boundary conditions for nonlinear scalar partial differential equations, Comput. Method. Appl. M., 195 (2006), 3760-3775.

[17]

J. Zhang, Z. Xu and X. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case, Phys. Rev. E, 79 (2009), 046711-1-046711-8.

[18]

R. R. Paz, M. A. Storti and L. Garelli, Absorbing Boundary Condition for Nonlinear Hyperbolic Partial Differential Equations with Unknown Riemann Invariants, Fluid Mechanics (C), XXVIII (2009), 1593-1620.

[19]

J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 269-305.

[20]

L. Hörmander, Pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 501-517.

[21]

L. Nirenberg, Lectures on linear partial differential equations, CBMS.: Regional Conference Series in Mathematics, 17 (1973), 1-58.

[22]

L. Hörmander, The analysis of linear partial differential operators III: Pseudo-Differential Operators, Springer-Verlag, Berlin Heidelberg, 1985.

[23]

M. W. Wong, An introduction to pseudo-differential operators, World Scientific Publishing, Singapore, 1999.

[24]

A. Majda and S. Osher, Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28 (1975), 479-499.

[25]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.

[26]

C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equations, J. Math. Anal. Appl., 356 (2009), 738-751.

[27]

T. Ha-Duong and P. Joly, On the Stability Analysis of Boundary Conditions for the Wave Equation by Energy Methods. Part I: The Homogeneous Case, Math. Comp., 62 (1994), 539-563.

[28]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation., Discret. Contin. Dyn. S., 2 (2009), 503-525.

[29]

B. Kaltenbacher and I. Lasiecka, Well-Posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, in The Proceedings of the 8th AIMS Conference, (2011), 763-773.

[30]

I. Shevchenko and B. Wohlmuth, Self-adapting absorbing boundary conditions for the wave equation, Wave Motion, 49 (2012), 461-473.

[31]

T. Hughes, The finite element method: linear static and dynamic finite element analysis, Dover Publications, 2000.

[32]

B. Kaltenbacher and I. Shevchenko, Absorbing boundary conditions for the Westervelt equation, arXiv:1408.5031

show all references

References:
[1]

P. J. Westervelt, Parametric acoustic array, J. Acoust. Soc. Am., 35 (1963), 535-537.

[2]

M. Averkiou and R. Cleveland, Modeling of an electrohydraulic lithotripter with the KZK equation, J. Acoust. Soc. Am., 106 (1999), 102-112.

[3]

C. Le Floch and M. Fink, Ultrasonic mapping of temperature in hyperthermia: the thermal lens effect, in Proceedings of 1997 IEEE Ultrasonics Symposium, (1997), 1301-1304.

[4]

C. Simon, P. VanBaren and E. Ebbini, Two-dimensional temperature estimation using diagnostic ultrasound, IEEE Trans. Ultrason. Ferr., 45 (1998), 1088-1099.

[5]

M. Pernot, K. Waters, J. Bercoff, M. Tanter and M. Fink, Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation, in Proceedings of 2002 IEEE Ultrasonics Symposium, (2002), 1447-1450.

[6]

C. Le Floch, M. Tanter and M. Fink, Self-defocusing in ultrasonic hyperthermia: Experiment and simulation, Appl. Phys. Lett., 74 (1999), 3062-3064.

[7]

I. Hallaj, R. Cleveland and K. Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am., 109 (2001), 2245-2253.

[8]

C. Connor and K. Hynynen, Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol., 47 (2002), 1911-1928.

[9]

S. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27 (1998), 465-532.

[10]

T. Hagstrom, New results on absorbing layers and radiation boundary conditions, in Topics in computational wave propagation. Direct and inverse problems. Lect. Notes Comput. Sci. Eng. (M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne), Springer-Verlag, (2003), 1-42.

[11]

D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave motion, 39 (2004), 319-326.

[12]

D. Givoli, Computational absorbing boundaries, in Computational Acoustics of Noise Propagation in Fluids (S. Marburg and B. Nolte), Springer-Verlag, (2008), 145-166.

[13]

B. Engquist and A. Majda, Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations, Comm. Pure Appl. Math., 32 (1979), 313-357.

[14]

E. Bécache, D. Givoli and T. Hagstrom, High-order absorbing boundary conditions for anisotropic and convective wave equations, J. Comput. Phys., 229 (2010), 1099-1129.

[15]

G. W. Hedstrom, Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems, J. Comput. Phys., 30 (1979), 222-237.

[16]

J. Szeftel, Absorbing boundary conditions for nonlinear scalar partial differential equations, Comput. Method. Appl. M., 195 (2006), 3760-3775.

[17]

J. Zhang, Z. Xu and X. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case, Phys. Rev. E, 79 (2009), 046711-1-046711-8.

[18]

R. R. Paz, M. A. Storti and L. Garelli, Absorbing Boundary Condition for Nonlinear Hyperbolic Partial Differential Equations with Unknown Riemann Invariants, Fluid Mechanics (C), XXVIII (2009), 1593-1620.

[19]

J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 269-305.

[20]

L. Hörmander, Pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 501-517.

[21]

L. Nirenberg, Lectures on linear partial differential equations, CBMS.: Regional Conference Series in Mathematics, 17 (1973), 1-58.

[22]

L. Hörmander, The analysis of linear partial differential operators III: Pseudo-Differential Operators, Springer-Verlag, Berlin Heidelberg, 1985.

[23]

M. W. Wong, An introduction to pseudo-differential operators, World Scientific Publishing, Singapore, 1999.

[24]

A. Majda and S. Osher, Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28 (1975), 479-499.

[25]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651.

[26]

C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equations, J. Math. Anal. Appl., 356 (2009), 738-751.

[27]

T. Ha-Duong and P. Joly, On the Stability Analysis of Boundary Conditions for the Wave Equation by Energy Methods. Part I: The Homogeneous Case, Math. Comp., 62 (1994), 539-563.

[28]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation., Discret. Contin. Dyn. S., 2 (2009), 503-525.

[29]

B. Kaltenbacher and I. Lasiecka, Well-Posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, in The Proceedings of the 8th AIMS Conference, (2011), 763-773.

[30]

I. Shevchenko and B. Wohlmuth, Self-adapting absorbing boundary conditions for the wave equation, Wave Motion, 49 (2012), 461-473.

[31]

T. Hughes, The finite element method: linear static and dynamic finite element analysis, Dover Publications, 2000.

[32]

B. Kaltenbacher and I. Shevchenko, Absorbing boundary conditions for the Westervelt equation, arXiv:1408.5031

[1]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[2]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations and Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[3]

Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022048

[4]

Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515

[5]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[6]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[7]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[8]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[9]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[10]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[11]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[12]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[13]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[14]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[15]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[16]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[17]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[18]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

[19]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[20]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

 Impact Factor: 

Metrics

  • PDF downloads (159)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]