Citation: |
[1] |
M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), no. 1, 91-133. |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, (2000). |
[3] |
H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, Applications to PDEs and Optimization, MPS-SIAM Series on Optimization, SIAM and MPS (2001). |
[4] |
G. Dal Maso, An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA (1993). |
[5] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Inc., Boca Raton (1992). |
[6] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80, Birkhäuser (1984). |
[7] |
R. Kobayashi, Modeling of grain structure evolution, Variational Problems and Related Topics, RIMS Kôkyûroku, 1210 (2001), 68-77. |
[8] |
J. S. Moll and K. Shirakawa, Existence of solutions to the Kobayashi-Warren-Carter system, Calc. Var. Partial Differential Equations, 51 (2014), no. 3-4, 621-656. |
[9] |
J. S. Moll, K. Shirakawa and H. Watanabe, Energy dissipative solutions to the Kobayashi-Warren-Carter system, In preparation. |
[10] |
Ken Shirakawa and H. Watanabe, Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion, Discrete Conin. Dyn. Syst. Ser. S, 7 (2014), no. 1, 139-159. |
[11] |
K. Shirakawa, H. Watanabe and N. Yamazaki, Solvability of one-dimensional phase field systems associated with grain boundary motion, Math. Ann., 356 (2013), 301-330. |
[12] |
K. Shirakawa, H. Watanabe and N. Yamazaki, Existence for a PDE-model of a grain boundary motion involving solidification effect, New Role of the Theory of Abstract Evolution Equations, RIMS KôKyûroku, 1892 (2014), 52-72. |
[13] |
K. Shirakawa, H. Watanabe and N. Yamazaki, Phase-field systems for grain boundary motions under isothermal solidifications, Adv. Math. Sci. Appl. (to appear). |
[14] |
J. Simon, Compact sets in the space $ L^p(0,T;B) $, Ann. Mat. Pura Appl. (4), 146, 65-96 (1987). |
[15] |
H. Watanabe and K. Shirakawa, Qualitative properties of a one-dimensional phase-field system associated with grain boundary, GAKUTO Internat. Ser. Math. Sci. Appl., 36 (2013), 301-328. |
[16] |
H. Watanabe and K. Shirakawa, Stability for approximation methods of the one-dimensional Kobayashi-Warren-Carter system, Math. Bohem., 139 (2014), no. 2, 381-389. |