2015, 2015(special): 990-999. doi: 10.3934/proc.2015.990

Noether's theorem for higher-order variational problems of Herglotz type

1. 

Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro

2. 

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro

3. 

CIDMA — Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Received  September 2014 Revised  July 2015 Published  November 2015

We approach higher-order variational problems of Herglotz type from an optimal control point of view. Using optimal control theory, we derive a generalized Euler--Lagrange equation, transversality conditions, DuBois--Reymond necessary optimality condition and Noether's theorem for Herglotz's type higher-order variational problems, valid for piecewise smooth functions.
Citation: Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990
References:
[1]

G. S. F. Frederico and D. F. M. Torres, Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense, Rep. Math. Phys., 71 (2013), no. 3, 291-304.

[2]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[3]

S. Lenhart and J. T. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[4]

E. Noether, Invariante Variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Gttingen, (1918), 235-257.

[5]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Interscience Publishers, John Wiley and Sons Inc, New York, London, 1962.

[6]

S. P. S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), no. 4, 409-419.

[7]

S. P. S. Santos, N. Martins and D. F. M. Torres, An optimal control approach to Herglotz variational problems, Optimization in the Natural Sciences (eds. A. Plakhov, T. Tchemisova and A. Freitas), Communications in Computer and Information Science, Vol. 499, Springer, (2015), 107-117.

[8]

D. F. M. Torres, Conservation laws in optimal control, in Dynamics, bifurcations, and control (Kloster Irsee, 2001), 287-296,

[9]

D. F. M. Torres, On the Noether theorem for optimal control, European Journal of Control, 8 (2002), no. 1 , 56-63.

[10]

D. F. M. Torres, Quasi-invariant optimal control problems, Port. Math. (N.S.), 61 (2004), no. 1, 97-114.

[11]

D. F. M. Torres, Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal. 3 (2004), no. 3, 491-500.

[12]

B. van Brunt, The calculus of variations, Universitext, Springer-Verlag, New York, 2004.

show all references

References:
[1]

G. S. F. Frederico and D. F. M. Torres, Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense, Rep. Math. Phys., 71 (2013), no. 3, 291-304.

[2]

G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.

[3]

S. Lenhart and J. T. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[4]

E. Noether, Invariante Variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Gttingen, (1918), 235-257.

[5]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Interscience Publishers, John Wiley and Sons Inc, New York, London, 1962.

[6]

S. P. S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), no. 4, 409-419.

[7]

S. P. S. Santos, N. Martins and D. F. M. Torres, An optimal control approach to Herglotz variational problems, Optimization in the Natural Sciences (eds. A. Plakhov, T. Tchemisova and A. Freitas), Communications in Computer and Information Science, Vol. 499, Springer, (2015), 107-117.

[8]

D. F. M. Torres, Conservation laws in optimal control, in Dynamics, bifurcations, and control (Kloster Irsee, 2001), 287-296,

[9]

D. F. M. Torres, On the Noether theorem for optimal control, European Journal of Control, 8 (2002), no. 1 , 56-63.

[10]

D. F. M. Torres, Quasi-invariant optimal control problems, Port. Math. (N.S.), 61 (2004), no. 1, 97-114.

[11]

D. F. M. Torres, Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal. 3 (2004), no. 3, 491-500.

[12]

B. van Brunt, The calculus of variations, Universitext, Springer-Verlag, New York, 2004.

[1]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4593-4610. doi: 10.3934/dcds.2015.35.4593

[2]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[3]

Clara Carlota, António Ornelas. The DuBois-Reymond differential inclusion for autonomous optimal control problems with pointwise-constrained derivatives. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 467-484. doi: 10.3934/dcds.2011.29.467

[4]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[5]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[6]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006

[7]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012

[8]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[9]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[10]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[11]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[12]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[13]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[14]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[15]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure and Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[16]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[17]

Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99

[18]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[19]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[20]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

 Impact Factor: 

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (0)

[Back to Top]