-
Previous Article
Optimal unbiased estimation for maximal distribution
- PUQR Home
- This Issue
- Next Article
Reduced-form setting under model uncertainty with non-linear affine intensities
1. | Department of Mathematics, Workgroup Financial and Insurance Mathematics, University of Munich (LMU), Theresienstraße 39, 80333 Munich, Germany |
2. | Department of Mathematics of Natural, Social and Life Sciences, Gran Sasso Science Institute (GSSI), Viale F. Crispi 7, 67100 L’Aquila, Italy |
In this paper we extend the reduced-form setting under model uncertainty introduced in [
References:
[1] |
Beatrice Acciaio, Mathias Beiglböck, Friedrich Penkner and Walter Schachermayer, A modelfree version of the fundamental theorem of asset pricing and the super-replication theorem, Mathematical Finance, 2021, 26(2): 233-251. |
[2] |
Bahar Akhtari, Francesca Biagini, Andrea Mazzon, and Katharina Oberpriller, Generalized Feynman-Kac Formula under volatility uncertainty, arXiv: 2012.08163, 2012. |
[3] |
Anna Aksamit and Monique Jeanblanc, Enlargement of Filtration with Finance in View, Springer, 2017. |
[4] |
Erhan Bayraktar, Yuchong Zhang, and Zhou Zhou, A note on the fundamental theorem of asset pricing under model uncertainty, Risks, 2014, 2(4): 425-433. |
[5] |
Francesca Biagini and Yinglin Zhang, Reduced-form framework under model uncertainty, The Annals of Applied Probability, 2019, 29(4): 2481-2522. |
[6] |
Sara Biagini, Bruno Bouchard, Constantinos Kardaras, and Marcel Nutz, Robust fundamental theorem for continuous processes, Mathematical Finance, 2017, 27(4): 963-987. |
[7] |
Thomasz R. Bielecki and Marek Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer, 2004. |
[8] |
Enrico Biffis, Affine processes for dynamic mortality and actuarial valuations, SSRN Electronic Journal, 2004, https://dx.doi.org/10.2139/ssrn.647421. |
[9] |
Bruno Bouchard and Marcel Nutz, Arbitrage and duality in nondominated discrete-time models, The Annals of Applied Probability, 2015, 25(2): 823-859. |
[10] |
Andrew Cairns, David Blake, and Kevin Dowd, Pricing death: Frameworks for the valuation and securitization of mortality risk, ASTIN Bulletin, 2006, 36(1): 79-120. |
[11] |
Giorgia Callegaro, Monique Jeanblanc, and Behnaz Zargari, Carthaginian enlargement of filtrations, arXiv: 1111.3073v1, 2018. |
[12] |
Mikkel Dahl, Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Economics, 2004, 35(1): 113-136.
doi: 10.1016/j.insmatheco.2004.05.003. |
[13] |
Nicole El Karoui and Xiaolu Tan, Capacities, measurable selection & dynamic programming, Part I: Abstract framework, arXiv: 1310.3363v1, 2013. |
[14] |
Nicole El Karoui and Xiaolu Tan, Capacities, measurable selection & dynamic programming, Part Ⅱ: Application in stochastic control problems, arXiv: 1310.3364v2, 2015. |
[15] |
Tolulope Fadina, Ariel Neufeld, and Thorsten Schmidt, Affine processes under parameter uncertainty, Probability, Uncertainty and Quantitative Risk, 2019, 4: 5.
doi: 10.1186/s41546-019-0039-1. |
[16] |
Tolulope Fadina and Thorsten Schmidt, Default ambiguity, Risks, 2019, 7(2): 64. |
[17] |
Damir Filipovic, Term-Structure Models: A Graduate Course, Springer, 2009. |
[18] |
Hans Föllmer and Philip Protter, Local martingales and filtration shrinkage, ESAIM: Probability and Statistics, 2011, 15: S25-S28. |
[19] |
Hans Föllmer and Alexander Schied, Stochastic Finance: An Introduction in Discrete Time, De Gruyter, 2016. |
[20] |
Djibril Gueye, Monique Jeanblanc, and Libo Li, Models of default times and Cox model revisited, Freiburg FRIAS: Finance and Insurance, November 2019. |
[21] |
Daniel Hollender, Lèvy-type processes under uncertainty and related nonlocal equations, PhD Thesis, TU Dresden, 2016. |
[22] |
Julian Hölzermann, The Hull-White model under Knightian uncertainty about the volatility, arXiv: 1808.03463v2, 2019. |
[23] |
Julian Hölzermann, Pricing interest rate derivatives under volatility uncertainty, arXiv: 2003.04606v1, 2020. |
[24] |
Julian Hölzermann and Lian Quian, Term structure modeling under volatility uncertainty, arXiv: 1904.02930, 2020. |
[25] |
Jean Jacod and Albert N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, 2013. |
[26] |
Yuri Kabanov, Constantinos Kardaras, and Shiqi Song, No arbitrage of the first kind and local martingale numèraires, Finance and Stochastics, 2016, 20(4): 1097-1108.
doi: 10.1007/s00780-016-0310-6. |
[27] |
Constantinos Kardaras, Finitely additive probabilities and the fundamental theorem of asset pricing, In: Contemporary Quantitative Finance, Springer, 2010: 19-34. |
[28] |
Dimitri O. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets, Probability Theory and Related Fields, 1996, 105(4): 459-479.
doi: 10.1007/BF01191909. |
[29] |
David Lando, On Cox processes and credit risky securities, Review of Derivatives Research, 1998, 2(2-3): 99-120. |
[30] |
Elisa Luciano and Elena Vigna, Non-mean reverting affine processes for stochastic mortality, SSRN Electronic Journal, 2005, https://ssrn.com/abstract=724706. |
[31] |
Ariel Neufeld and Marcel Nutz, Superreplication under volatility uncertainty for measurable claims, Electronic Journal of Probability, 2013, 18(48): 1-14. |
[32] |
Ariel Neufeld and Marcel Nutz, Measurability of semimartingale characteristics with respect to the probability law, Stochastic Processes and their Applications, 2014, 124(11): 3819-3845.
doi: 10.1016/j.spa.2014.07.006. |
[33] |
Ariel Neufeld and Marcel Nutz, Nonlinear Lèvy processes and their characteristics, Transactions of the American Mathematical Society, 2017, 369(1): 69-95.
doi: 10.1090/tran/6656. |
[34] |
Ariel Neufeld and Marcel Nutz, Robust utility maximization with Lévy processes, Mathematical Finance, 2018, 28(1): 82-105. |
[35] |
Marcel Nutz, Random G-expectations, The Annals of Applied Probability, 2013, 23(5): 1755-1777. |
[36] |
Marcel Nutz, Superreplication under model uncertainty in discrete time, Finance and Stochastics, 2014, 18(4): 791-803.
doi: 10.1007/s00780-014-0238-7. |
[37] |
Marcel Nutz, Robust superhedging with jumps and diffusion, Stochastic Processes and their Applications, 2015, 125(12): 4543-4555.
doi: 10.1016/j.spa.2015.07.008. |
[38] |
Marcel Nutz and Roman Van Handel, Constructing sublinear expectations on path space, Stochastic Processes and their Applications, 2013, 123(8): 3100-3121.
doi: 10.1016/j.spa.2013.03.022. |
[39] |
Marcel Nutz and Mete Soner, Superhedging and dynamic risk measures under volatility uncertainty, SIAM Journal on Control and Optimization (SICON), 2012, 50(4): 2065-2089.
doi: 10.1137/100814925. |
[40] |
Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty, arXiv: 1002.456v1, 2010. |
[41] |
Philip E, Protter, Stochastic Integration and Differential Equations, Springer, 2005. |
[42] |
Daniel Revuz and Marc Yor, Continuous Martingales and Brownian Motion, Springer, 2005. |
[43] |
Thorsten Rheinländer and Jenny Sexton, Hedging Derivatives, World Scientific, 2011. |
[44] |
David F. Schrager, Affine stochastic mortality, Insurance: Mathematics and Economics, 2006, 38(1): 81-97.
doi: 10.1016/j.insmatheco.2005.06.013. |
[45] |
Jörg Vorbrink, Financial markets with volatility uncertainty, Journal of Mathematics Economics, 2014, 53: 64-78.
doi: 10.1016/j.jmateco.2014.05.008. |
[46] |
Yinglin Zhang, Insurance modeling in continuous time, PhD Thesis, Ludwig-Maximilians University Munich, 2018. |
show all references
1Galmarino’s Test [42, Exercise 4.21]: Let
2By the same arguments regarding the filtration as in Remark 5.2,
3The sigma-martingale property holds with respect to the filtration
4Note, the assumption
References:
[1] |
Beatrice Acciaio, Mathias Beiglböck, Friedrich Penkner and Walter Schachermayer, A modelfree version of the fundamental theorem of asset pricing and the super-replication theorem, Mathematical Finance, 2021, 26(2): 233-251. |
[2] |
Bahar Akhtari, Francesca Biagini, Andrea Mazzon, and Katharina Oberpriller, Generalized Feynman-Kac Formula under volatility uncertainty, arXiv: 2012.08163, 2012. |
[3] |
Anna Aksamit and Monique Jeanblanc, Enlargement of Filtration with Finance in View, Springer, 2017. |
[4] |
Erhan Bayraktar, Yuchong Zhang, and Zhou Zhou, A note on the fundamental theorem of asset pricing under model uncertainty, Risks, 2014, 2(4): 425-433. |
[5] |
Francesca Biagini and Yinglin Zhang, Reduced-form framework under model uncertainty, The Annals of Applied Probability, 2019, 29(4): 2481-2522. |
[6] |
Sara Biagini, Bruno Bouchard, Constantinos Kardaras, and Marcel Nutz, Robust fundamental theorem for continuous processes, Mathematical Finance, 2017, 27(4): 963-987. |
[7] |
Thomasz R. Bielecki and Marek Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer, 2004. |
[8] |
Enrico Biffis, Affine processes for dynamic mortality and actuarial valuations, SSRN Electronic Journal, 2004, https://dx.doi.org/10.2139/ssrn.647421. |
[9] |
Bruno Bouchard and Marcel Nutz, Arbitrage and duality in nondominated discrete-time models, The Annals of Applied Probability, 2015, 25(2): 823-859. |
[10] |
Andrew Cairns, David Blake, and Kevin Dowd, Pricing death: Frameworks for the valuation and securitization of mortality risk, ASTIN Bulletin, 2006, 36(1): 79-120. |
[11] |
Giorgia Callegaro, Monique Jeanblanc, and Behnaz Zargari, Carthaginian enlargement of filtrations, arXiv: 1111.3073v1, 2018. |
[12] |
Mikkel Dahl, Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Economics, 2004, 35(1): 113-136.
doi: 10.1016/j.insmatheco.2004.05.003. |
[13] |
Nicole El Karoui and Xiaolu Tan, Capacities, measurable selection & dynamic programming, Part I: Abstract framework, arXiv: 1310.3363v1, 2013. |
[14] |
Nicole El Karoui and Xiaolu Tan, Capacities, measurable selection & dynamic programming, Part Ⅱ: Application in stochastic control problems, arXiv: 1310.3364v2, 2015. |
[15] |
Tolulope Fadina, Ariel Neufeld, and Thorsten Schmidt, Affine processes under parameter uncertainty, Probability, Uncertainty and Quantitative Risk, 2019, 4: 5.
doi: 10.1186/s41546-019-0039-1. |
[16] |
Tolulope Fadina and Thorsten Schmidt, Default ambiguity, Risks, 2019, 7(2): 64. |
[17] |
Damir Filipovic, Term-Structure Models: A Graduate Course, Springer, 2009. |
[18] |
Hans Föllmer and Philip Protter, Local martingales and filtration shrinkage, ESAIM: Probability and Statistics, 2011, 15: S25-S28. |
[19] |
Hans Föllmer and Alexander Schied, Stochastic Finance: An Introduction in Discrete Time, De Gruyter, 2016. |
[20] |
Djibril Gueye, Monique Jeanblanc, and Libo Li, Models of default times and Cox model revisited, Freiburg FRIAS: Finance and Insurance, November 2019. |
[21] |
Daniel Hollender, Lèvy-type processes under uncertainty and related nonlocal equations, PhD Thesis, TU Dresden, 2016. |
[22] |
Julian Hölzermann, The Hull-White model under Knightian uncertainty about the volatility, arXiv: 1808.03463v2, 2019. |
[23] |
Julian Hölzermann, Pricing interest rate derivatives under volatility uncertainty, arXiv: 2003.04606v1, 2020. |
[24] |
Julian Hölzermann and Lian Quian, Term structure modeling under volatility uncertainty, arXiv: 1904.02930, 2020. |
[25] |
Jean Jacod and Albert N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, 2013. |
[26] |
Yuri Kabanov, Constantinos Kardaras, and Shiqi Song, No arbitrage of the first kind and local martingale numèraires, Finance and Stochastics, 2016, 20(4): 1097-1108.
doi: 10.1007/s00780-016-0310-6. |
[27] |
Constantinos Kardaras, Finitely additive probabilities and the fundamental theorem of asset pricing, In: Contemporary Quantitative Finance, Springer, 2010: 19-34. |
[28] |
Dimitri O. Kramkov, Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets, Probability Theory and Related Fields, 1996, 105(4): 459-479.
doi: 10.1007/BF01191909. |
[29] |
David Lando, On Cox processes and credit risky securities, Review of Derivatives Research, 1998, 2(2-3): 99-120. |
[30] |
Elisa Luciano and Elena Vigna, Non-mean reverting affine processes for stochastic mortality, SSRN Electronic Journal, 2005, https://ssrn.com/abstract=724706. |
[31] |
Ariel Neufeld and Marcel Nutz, Superreplication under volatility uncertainty for measurable claims, Electronic Journal of Probability, 2013, 18(48): 1-14. |
[32] |
Ariel Neufeld and Marcel Nutz, Measurability of semimartingale characteristics with respect to the probability law, Stochastic Processes and their Applications, 2014, 124(11): 3819-3845.
doi: 10.1016/j.spa.2014.07.006. |
[33] |
Ariel Neufeld and Marcel Nutz, Nonlinear Lèvy processes and their characteristics, Transactions of the American Mathematical Society, 2017, 369(1): 69-95.
doi: 10.1090/tran/6656. |
[34] |
Ariel Neufeld and Marcel Nutz, Robust utility maximization with Lévy processes, Mathematical Finance, 2018, 28(1): 82-105. |
[35] |
Marcel Nutz, Random G-expectations, The Annals of Applied Probability, 2013, 23(5): 1755-1777. |
[36] |
Marcel Nutz, Superreplication under model uncertainty in discrete time, Finance and Stochastics, 2014, 18(4): 791-803.
doi: 10.1007/s00780-014-0238-7. |
[37] |
Marcel Nutz, Robust superhedging with jumps and diffusion, Stochastic Processes and their Applications, 2015, 125(12): 4543-4555.
doi: 10.1016/j.spa.2015.07.008. |
[38] |
Marcel Nutz and Roman Van Handel, Constructing sublinear expectations on path space, Stochastic Processes and their Applications, 2013, 123(8): 3100-3121.
doi: 10.1016/j.spa.2013.03.022. |
[39] |
Marcel Nutz and Mete Soner, Superhedging and dynamic risk measures under volatility uncertainty, SIAM Journal on Control and Optimization (SICON), 2012, 50(4): 2065-2089.
doi: 10.1137/100814925. |
[40] |
Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty, arXiv: 1002.456v1, 2010. |
[41] |
Philip E, Protter, Stochastic Integration and Differential Equations, Springer, 2005. |
[42] |
Daniel Revuz and Marc Yor, Continuous Martingales and Brownian Motion, Springer, 2005. |
[43] |
Thorsten Rheinländer and Jenny Sexton, Hedging Derivatives, World Scientific, 2011. |
[44] |
David F. Schrager, Affine stochastic mortality, Insurance: Mathematics and Economics, 2006, 38(1): 81-97.
doi: 10.1016/j.insmatheco.2005.06.013. |
[45] |
Jörg Vorbrink, Financial markets with volatility uncertainty, Journal of Mathematics Economics, 2014, 53: 64-78.
doi: 10.1016/j.jmateco.2014.05.008. |
[46] |
Yinglin Zhang, Insurance modeling in continuous time, PhD Thesis, Ludwig-Maximilians University Munich, 2018. |
[1] |
Tomasz R. Bielecki, Igor Cialenco, Marek Rutkowski. Arbitrage-free pricing of derivatives in nonlinear market models. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 2-. doi: 10.1186/s41546-018-0027-x |
[2] |
Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002 |
[3] |
Laurent Pfeiffer. Optimality conditions in variational form for non-linear constrained stochastic control problems. Mathematical Control and Related Fields, 2020, 10 (3) : 493-526. doi: 10.3934/mcrf.2020008 |
[4] |
Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001 |
[5] |
Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027 |
[6] |
Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : i-iv. doi: 10.3934/dcdss.201702i |
[7] |
Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165 |
[8] |
Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33. |
[9] |
Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems and Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675 |
[10] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[11] |
Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239 |
[12] |
Anugu Sumith Reddy, Amit Apte. Stability of non-linear filter for deterministic dynamics. Foundations of Data Science, 2021, 3 (3) : 647-675. doi: 10.3934/fods.2021025 |
[13] |
Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3795-3823. doi: 10.3934/cpaa.2021131 |
[14] |
Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems and Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004 |
[15] |
Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089 |
[16] |
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 |
[17] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[18] |
Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841 |
[19] |
Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations and Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193 |
[20] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
Impact Factor:
Tools
Article outline
[Back to Top]