-
Previous Article
Existence, uniqueness and strict comparison theorems for BSDEs driven by RCLL martingales
- PUQR Home
- This Issue
-
Next Article
Conditional coherent risk measures and regime-switching conic pricing
General time interval multidimensional BSDEs with generators satisfying a weak stochastic-monotonicity condition
1. | School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China |
This paper establishes an existence and uniqueness result for the adapted solution of a general time interval multidimensional backward stochastic differential equation (BSDE), where the generator $ g $ satisfies a weak stochastic-monotonicity condition and a general growth condition in the state variable $ y $, and a stochastic-Lipschitz condition in the state variable $ z $. This unifies and strengthens some known works. In order to prove this result, we develop some ideas and techniques employed in Xiao and Fan [
References:
[1] |
Bender, C. and Kohlmann, M., BSDES with stochastic lipschitz condition, In: CoFE-Diskussionspapiere/Zentrum für Finanzen und Ökonometrie, 2000, http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-4241. |
[2] |
Bismut, J., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 1973, 44(2): 384−404. |
[3] |
Briand, P. and Confortola, F., BSDEs with stochastic lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 2008, 118(5): 818−838. |
[4] |
Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L.,
$ L^p $ solutions of backward stochastic differential equations, Stochastic Process. Appl., 2003, 108(1): 109−129.
doi: 10.1016/S0304-4149(03)00089-9. |
[5] |
Chen, Z. and Wang, B., Infinite time interval BSDEs and the convergence of
$ g\text{-}{\rm{martingales}} $, Journal of the Australian Mathematical Society (Series A), 2000, 69(2): 187−211.
doi: 10.1017/S1446788700002172. |
[6] |
Delaen, F. and Tang, S., Harmonic analysis of stochastic equations and backward stochastics differential equations, Probab. Theory Relat. Fields, 2010, 146(1−2): 291−336.
doi: 10.1007/s00440-008-0191-5. |
[7] |
Ding, X. and Wu, R., A new proof for comparison theorems for stochastic differential inequalities with respect to semimartingales, Stochastic Process. Appl., 1998, 78(2): 155−171.
doi: 10.1016/S0304-4149(98)00051-9. |
[8] |
El Karoui, N. and Huang, S., A general result of existence and uniqueness of backward stochastic differential equations, In: Backward Stochastic Differential Equations, Pitman Research Notes in Mathematics Series, Longman, London, 1997, 364: 27−36. |
[9] |
El Karoui, N., Peng, S. and Quenez, M. C., Backward stochastic differential equations in finance, Math. Finance, 1997, 7(1): 1−71.
doi: 10.1111/1467-9965.00022. |
[10] |
Fan, S.,
$ L^p $ solutions of multidimensional BSDEs with weak monotonicity and general growth generators, J. Math. Anal. Appl., 2015, 432(1): 156−178.
doi: 10.1016/j.jmaa.2015.06.049. |
[11] |
Fan, S., Bounded solutions,
$ L^p\ (p>1) $ solutions and
$ L^1 $ solutions for one-dimensional BSDEs under general assumptions, Stochastic Process. Appl., 2016, 126(5): 1511−1552.
doi: 10.1016/j.spa.2015.11.012. |
[12] |
Fan, S. and Jiang, L., Multidimensional BSDEs with weak monotonicity and general growth generators, Acta Mathematica Sinica, English Series, 2013, 29(10): 1885−1906.
doi: 10.1007/s10114-013-2128-x. |
[13] |
Fan, S., Jiang, L. and Davison, M., Existence and uniqueness result for multidimensional BSDEs with generators of Osgood type, Front. Math. China, 2013, 8(4): 811−824.
doi: 10.1007/s11464-013-0298-6. |
[14] |
Kazamaki, N., Continuous exponential martingals and BMO, In: Lecture Notes in Math., Springer, Berlin, 1994. |
[15] |
Liu, Y., Li, D. and Fan, S.,
$ L^p\ (p > 1) $ solutions of BSDEs with generators satisfying some non-uniform conditions in
$ t $ and
$ \omega $, Chinese Ann. Math. B, 2020, 41(3): 479−494.
doi: 10.1007/s11401-020-0212-y. |
[16] |
Luo, H. and Fan, S., Bounded solutions for general time interval BSDEs with quadratic growth coefficients and stochastic conditions, Stoch. Dynam., 2018, 18(5): 1850034. |
[17] |
Mao, X., Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process. Appl., 1995, 58(2): 281−292.
doi: 10.1016/0304-4149(95)00024-2. |
[18] |
Morlais, M. A., Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance Stoch., 2009, 13: 121−150.
doi: 10.1007/s00780-008-0079-3. |
[19] |
Pardoux, E., BSDEs, weak convergence and homogenization of semilinear PDEs, In: Clarke, F. and Stern, R. (eds.), Nonlinear Analysis, Differential Equations and Control, Kluwer Academic, New York, 1999. |
[20] |
Pardoux, E. and Peng, S., Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 1990, 14(1): 55−61.
doi: 10.1016/0167-6911(90)90082-6. |
[21] |
Pardoux, E. and Ră ${\underset{\raise0.4em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{{\rm{s}}} }$ scanu, A., Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Springer, Cham, 2014. |
[22] |
Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures, In: Stochastic Methods in Finance, Lecture Notes in Math, Springer, Berlin, 2004, 1856: 165−253. |
[23] |
Wang, J., Ran, Q. and Chen, Q., $L^p$ solutions of BSDEs with stochastic lipschitz condition, J. Appl. Math. Stoch. Anal., 2007, 2007: 78196. |
[24] |
Wang, X. and Fan, S., A class of stochastic Gronwall’s inequality and its application, Journal of Inequalities and Applications, 2018, 2018(1): 336. |
[25] |
Xiao, L. and Fan, S., General time interval BSDEs under the weak monotonicity condition and nonlinear decomposition for general g-supermartingales, Stochastics, 2017, 89(5): 786−816.
doi: 10.1080/17442508.2017.1282956. |
show all references
References:
[1] |
Bender, C. and Kohlmann, M., BSDES with stochastic lipschitz condition, In: CoFE-Diskussionspapiere/Zentrum für Finanzen und Ökonometrie, 2000, http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-4241. |
[2] |
Bismut, J., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 1973, 44(2): 384−404. |
[3] |
Briand, P. and Confortola, F., BSDEs with stochastic lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Process. Appl., 2008, 118(5): 818−838. |
[4] |
Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L.,
$ L^p $ solutions of backward stochastic differential equations, Stochastic Process. Appl., 2003, 108(1): 109−129.
doi: 10.1016/S0304-4149(03)00089-9. |
[5] |
Chen, Z. and Wang, B., Infinite time interval BSDEs and the convergence of
$ g\text{-}{\rm{martingales}} $, Journal of the Australian Mathematical Society (Series A), 2000, 69(2): 187−211.
doi: 10.1017/S1446788700002172. |
[6] |
Delaen, F. and Tang, S., Harmonic analysis of stochastic equations and backward stochastics differential equations, Probab. Theory Relat. Fields, 2010, 146(1−2): 291−336.
doi: 10.1007/s00440-008-0191-5. |
[7] |
Ding, X. and Wu, R., A new proof for comparison theorems for stochastic differential inequalities with respect to semimartingales, Stochastic Process. Appl., 1998, 78(2): 155−171.
doi: 10.1016/S0304-4149(98)00051-9. |
[8] |
El Karoui, N. and Huang, S., A general result of existence and uniqueness of backward stochastic differential equations, In: Backward Stochastic Differential Equations, Pitman Research Notes in Mathematics Series, Longman, London, 1997, 364: 27−36. |
[9] |
El Karoui, N., Peng, S. and Quenez, M. C., Backward stochastic differential equations in finance, Math. Finance, 1997, 7(1): 1−71.
doi: 10.1111/1467-9965.00022. |
[10] |
Fan, S.,
$ L^p $ solutions of multidimensional BSDEs with weak monotonicity and general growth generators, J. Math. Anal. Appl., 2015, 432(1): 156−178.
doi: 10.1016/j.jmaa.2015.06.049. |
[11] |
Fan, S., Bounded solutions,
$ L^p\ (p>1) $ solutions and
$ L^1 $ solutions for one-dimensional BSDEs under general assumptions, Stochastic Process. Appl., 2016, 126(5): 1511−1552.
doi: 10.1016/j.spa.2015.11.012. |
[12] |
Fan, S. and Jiang, L., Multidimensional BSDEs with weak monotonicity and general growth generators, Acta Mathematica Sinica, English Series, 2013, 29(10): 1885−1906.
doi: 10.1007/s10114-013-2128-x. |
[13] |
Fan, S., Jiang, L. and Davison, M., Existence and uniqueness result for multidimensional BSDEs with generators of Osgood type, Front. Math. China, 2013, 8(4): 811−824.
doi: 10.1007/s11464-013-0298-6. |
[14] |
Kazamaki, N., Continuous exponential martingals and BMO, In: Lecture Notes in Math., Springer, Berlin, 1994. |
[15] |
Liu, Y., Li, D. and Fan, S.,
$ L^p\ (p > 1) $ solutions of BSDEs with generators satisfying some non-uniform conditions in
$ t $ and
$ \omega $, Chinese Ann. Math. B, 2020, 41(3): 479−494.
doi: 10.1007/s11401-020-0212-y. |
[16] |
Luo, H. and Fan, S., Bounded solutions for general time interval BSDEs with quadratic growth coefficients and stochastic conditions, Stoch. Dynam., 2018, 18(5): 1850034. |
[17] |
Mao, X., Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients, Stochastic Process. Appl., 1995, 58(2): 281−292.
doi: 10.1016/0304-4149(95)00024-2. |
[18] |
Morlais, M. A., Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance Stoch., 2009, 13: 121−150.
doi: 10.1007/s00780-008-0079-3. |
[19] |
Pardoux, E., BSDEs, weak convergence and homogenization of semilinear PDEs, In: Clarke, F. and Stern, R. (eds.), Nonlinear Analysis, Differential Equations and Control, Kluwer Academic, New York, 1999. |
[20] |
Pardoux, E. and Peng, S., Adapted solution of a backward stochastic differential equation, Syst. Control Lett., 1990, 14(1): 55−61.
doi: 10.1016/0167-6911(90)90082-6. |
[21] |
Pardoux, E. and Ră ${\underset{\raise0.4em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{{\rm{s}}} }$ scanu, A., Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Springer, Cham, 2014. |
[22] |
Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures, In: Stochastic Methods in Finance, Lecture Notes in Math, Springer, Berlin, 2004, 1856: 165−253. |
[23] |
Wang, J., Ran, Q. and Chen, Q., $L^p$ solutions of BSDEs with stochastic lipschitz condition, J. Appl. Math. Stoch. Anal., 2007, 2007: 78196. |
[24] |
Wang, X. and Fan, S., A class of stochastic Gronwall’s inequality and its application, Journal of Inequalities and Applications, 2018, 2018(1): 336. |
[25] |
Xiao, L. and Fan, S., General time interval BSDEs under the weak monotonicity condition and nonlinear decomposition for general g-supermartingales, Stochastics, 2017, 89(5): 786−816.
doi: 10.1080/17442508.2017.1282956. |
[1] |
Jun Zhou, Jun Shen, Weinian Zhang. A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7207-7234. doi: 10.3934/dcds.2016114 |
[2] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[3] |
Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565 |
[4] |
Viorel Barbu. Existence for nonlinear finite dimensional stochastic differential equations of subgradient type. Mathematical Control and Related Fields, 2018, 8 (3&4) : 501-508. doi: 10.3934/mcrf.2018020 |
[5] |
Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533 |
[6] |
Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287 |
[7] |
Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305 |
[8] |
Marvin S. Müller. Approximation of the interface condition for stochastic Stefan-type problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4317-4339. doi: 10.3934/dcdsb.2019121 |
[9] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[10] |
Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 |
[11] |
Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075 |
[12] |
Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803 |
[13] |
Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5 |
[14] |
Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697 |
[15] |
Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447 |
[16] |
Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645 |
[17] |
Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002 |
[18] |
Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035 |
[19] |
Ran Wang, Jianliang Zhai, Shiling Zhang. Large deviation principle for stochastic Burgers type equation with reflection. Communications on Pure and Applied Analysis, 2022, 21 (1) : 213-238. doi: 10.3934/cpaa.2021175 |
[20] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]