\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs

†Equal contributor

The authors are grateful to anonymous reviewers and the editors for fruitful suggestions to improve the paper. This research was supported by Natural Sciences and Engineering Research Council of Canada (Grant No. RES0043487).

Abstract Full Text(HTML) Figure(1) / Table(6) Related Papers Cited by
  • This paper analyzes Conditional Value-at-Risk (CVaR) based partial hedging and its applications on equity-linked life insurance contracts in a Jump-Diffusion market model with transaction costs. A nonlinear partial differential equation (PDE) that an option value process inclusive of transaction costs should satisfy is provided. In particular, the closed-form expression of a European call option price is given. Meanwhile, the CVaR-based partial hedging strategy for a call option is derived explicitly. Both the CVaR hedging price and the weights of the hedging portfolio are based on an adjusted volatility. We obtain estimated values of expected total hedging errors and total transaction costs by a simulation method. Furthermore,our results are implemented to derive target clients’ survival probabilities and age of equity-linked life insurance contracts.

    Mathematics Subject Classification: 91G20, 91G60, 62P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Survival probability vs CVaR constraint for life insurance contracts for different revision frequencies, T = 5.

    Table 1.  Estimated present values of total hedging errors and total transaction costs with the adjusted volatility $ \hat{\sigma}_1 $, C = 5

    Maturity T (years) Revision period CVaR price HE TC HETC
    Biweekly 5.46 0.808 0.7688 0.0392
    T=1 Weekly 5.7489 1.0306 1.0588 −0.0282
    Daily 6.8641 2.2084 2.2208 −0.0124
    Biweekly 14.6754 1.4408 1.3929 0.0479
    T=3 Weekly 15.1997 1.8731 1.9117 −0.0386
    Daily 17.1948 3.9429 3.9721 −0.0292
    Biweekly 21.8367 1.6432 1.7092 −0.066
    T=5 Weekly 22.488 2.3572 2.3839 −0.0267
    Daily 34.958 4.9192 4.9291 −0.0099
    Biweekly 35.6998 2.0476 2.083 −0.0354
    T=10 Weekly 36.5054 2.9219 2.93 −0.0081
    Daily 39.5508 5.9992 5.9938 0.0054
    Biweekly 46.291 2.1415 2.1668 −0.0253
    T=15 Weekly 47.1447 3.0194 3.0096 0.0098
    Daily 50.3664 6.2761 6.2833 −0.0073
     | Show Table
    DownLoad: CSV

    Table 2.  Estimated present values of total hedging errors and total transaction costs with the original volatility $ \sigma_1 $, C = 5

    Maturity T (years)Revision periodCVaR priceHETCHETC
    Biweekly 4.7298 −0.0298 0.8092 −0.839
    T=1 Weekly 4.7298 0.0177 1.104 −1.0863
    Daily 4.7298 −0.0041 2.4556 −2.4597
    Biweekly 13.3329 0.0305 1.4584 −1.427
    T=3 Weekly 13.3329 0.0182 2.0448 −2.0266
    Daily 13.3329 −0.0018 4.4939 −4.4957
    Biweekly 20.1652 −0.0288 1.7894 −1.8182
    T=5 Weekly 20.1652 −0.0108 2.5308 −2.5416
    Daily 20.1652 −0.0029 5.5339 −5.5368
    Biweekly 33.6293 −0.022 2.1664 −2.1884
    T=10 Weekly 33.6293 0.0215 3.0789 −3.0574
    Daily 33.6293 0.0053 6.7483 −6.743
    Biweekly 44.0962 −0.0259 2.2768 −2.3027
    T=15 Weekly 44.0962 0.0081 3.2585 −3.2504
    Daily 44.0962 0.0035 6.9676 −6.9641
     | Show Table
    DownLoad: CSV

    Table 3.  Estimated present values of total hedging errors and total transaction costs with adjusted volatility $ \hat{\sigma}_1 $ for different levels of CVaR constraint, T = 1

    Revision period$CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 7.5$ $CVaR_{0.95}\leq 10$
    HETCHETCHETCHETCHETCHETC
    Biweekly 0.808 0.7688 0.0392 0.7154 0.7505 −0.0351 0.6769 0.7228 −0.0459
    Weekly 1.0306 1.0588 −0.0282 1.0291 1.0622 −0.0331 0.9786 1.0173 −0.0387
    Daily 2.2084 2.2208 −0.0124 2.13 2.1519 −0.0219 2.0485 2.065 −0.0165
     | Show Table
    DownLoad: CSV

    Table 4.  Estimated present values of total hedging errors and total transaction costs with original volatility $ {\sigma}_1 $ for different levels of CVaR constraint, T = 1

    Revision period$CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 7.5$ $CVaR_{0.95}\leq 10$
    HETCHETCHETCHETCHETCHETC
    Biweekly −0.0298 0.8092 −0.839 −0.0064 0.7919 −0.7983 −0.0166 0.7383 −0.7549
    Weekly 0.0177 1.104 −1.0863 0.0169 1.0956 −1.0787 0.0281 1.0077 −0.9796
    Daily −0.0041 2.4556 −2.4597 0.0042 2.3388 −2.3346 0.021 2.255 −2.234
     | Show Table
    DownLoad: CSV

    Table 5.  Survival probabilities and age of insured in the market with transaction costs

    Maturity T (years) $CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 10$
    $ {}_{T}p_{x} $ age $ {}_{T}p_{x} $ age
    T=3 0.9078 75 0.8237 82
    T=5 0.9359 64 0.8762 72
    T=10 0.9633 45 0.9284 53
    T=15 0.9749 31 0.9507 41
     | Show Table
    DownLoad: CSV

    Table 6.  Survival probabilities and age of insured in the complete market

    Maturity T (years) $CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 10$
    ${}_{T}p_{x}$ age ${}_{T}p_{x}$ age
    T=3 0.8806 78 0.7741 84
    T=5 0.9166 67 0.8398 75
    T=10 0.9516 48 0.9058 57
    T=15 0.9665 36 0.9343 44
     | Show Table
    DownLoad: CSV
  • [1]

    Amin, K. I., Jump diffusion option valuation in discrete time, The Journal of Finance, 1993, 48(5): 1833−1863.

    doi: 10.1111/j.1540-6261.1993.tb05130.x.

    [2]

    Black, F. and Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81(3): 637−654.

    doi: 10.1086/260062.

    [3]

    Boyle, P. P. and Hardy, M. R., Reserving for maturity guarantees: Two approaches, Insurance: Mathematics and Economics, 1997, 21(2): 113−127.

    doi: 10.1016/S0167-6687(97)00026-7.

    [4]

    Boyle, P. P. and Vorst, T., Option replication in discrete time with transaction costs, The Journal of Finance, 1992, 47(1): 271−293.

    doi: 10.1111/j.1540-6261.1992.tb03986.x.

    [5]

    Bratyk, M. and Mishura, Y., The generalization of the quantile hedging problem for price process model involving finite number of Brownian and fractional Brownian motions, Theory of Stochastic Processes, 2008, 14(3): 27−38.

    [6]

    Brennan, M. J. and Schwartz, E. S., The pricing of equity-linked life insurance policies with an asset value guarantee, Journal of Financial Economics, 1976, 3(3): 195−213.

    doi: 10.1016/0304-405X(76)90003-9.

    [7]

    Cox, J. C. and Ross, S. A., The valuation of options for alternative stochastic processes, Journal of Financial Economics, 1976, 3(1): 145−166.

    [8]

    Dewynne, J. N., Whalley, A. E. and Wilmott, P., Path-dependent options and transaction costs, Philosophical transactions of the royal society of London, Series A: Physical and Engineering Sciences, 1994, 347(1684): 517−529.

    doi: 10.1098/rsta.1994.0061.

    [9]

    Föllmer, H. and Leukert, P., Quantile hedging, Finance and Stochastics, 1999, 3(3): 251−273.

    doi: 10.1007/s007800050062.

    [10]

    Föllmer, H. and Leukert, P., Efficient hedging: Cost versus shortfall risk, finance and stochastics, 2000, 4(2): 117−146.

    doi: 10.1007/s007800050008.

    [11]

    Hodges, S. D., and Neuberger, A., Optimal replication of contingent claims under transaction costs, Review Futures Market, 1989, 8(2): 222−239.

    [12]

    Hoggard, T., Whalley, A. E. and Wilmott, P., Option portfolios in the presence of transaction costs, Advances in Futures and Options Research, 1994, 7(4): 21−35.

    [13]

    Kirch, M. and Melnikov, A., Efficient hedging and pricing of life insurance policies in a jump-diffusion model, Stochastic Analysis and Applications, 2005, 23(6): 1213−1233.

    doi: 10.1080/07362990500292692.

    [14] Leland, H. E., Option portfolios in the presence of transaction costs, In: Boyle, P. P., Pennacchi G. and Ritchken P. (eds.), Advances in Futures and Options Research, 1985, 7(4): 21–35.
    [15]

    Melnikov, A. and Petrachenko, Y. G., On option pricing in binomial market with transaction costs, Finance and Stochastics, 2005, 9(1): 141−149.

    doi: 10.1007/s00780-004-0134-7.

    [16]

    Melnikov, A. and Skornyakova, V., Quantile hedging and its application to life insurance, Statistics & Decisions, 2005, 23(4): 301−316.

    [17]

    Merton, R. C., Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 1976, 3(1): 125−144.

    [18] Merton, R. C., Continuous-time Finance, Basil-Blackwell, Cambridge, 1990.
    [19]

    Melnikov, A. and Smirnov, I., Dynamic hedging of conditional value-at-risk, Insurance: Mathematics and Economics, 2012, 51(1): 182−190.

    doi: 10.1016/j.insmatheco.2012.03.011.

    [20]

    Melnikov, A. and Tong, S., Quantile hedging on equity-linked life insurance contracts with transaction costs, Insurance:Mathematics and Economics, 2014, 58: 77−88.

    doi: 10.1016/j.insmatheco.2014.06.005.

    [21]

    Toft, K. B., On the mean-variance tradeoff in option replication with transactions costs, The Journal of Financial and Quantitative Analysis, 1996, 31(2): 233−263.

    doi: 10.2307/2331181.

    [22] Melnikov, A. and Nosrati, A., Equity-linked Life Insurance Partial Hedging Methods, Chapman and Hall/CRC, 2017.
    [23]

    Mocioalca, O., Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 2007, 52(3): 349−366.

    [24] Zakamulin, V., Option pricing and hedging in the presence of transaction costs and nonlinear partial differential equations, SSRN Electronic Journal, 2008, https://ssrn.com/abstract=938933.
    [25]

    Zhou, S., Han, L., Li, W., Zhang, Y. and Han, M., A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process, Computational and Applied Mathematics, 2015, 34(3): 881−900.

    doi: 10.1007/s40314-014-0156-5.

  • 加载中

Figures(1)

Tables(6)

SHARE

Article Metrics

HTML views(817) PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return