[1]
|
Amin, K. I., Jump diffusion option valuation in discrete time, The Journal of Finance, 1993, 48(5): 1833−1863. doi: 10.1111/j.1540-6261.1993.tb05130.x.
|
[2]
|
Black, F. and Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81(3): 637−654. doi: 10.1086/260062.
|
[3]
|
Boyle, P. P. and Hardy, M. R., Reserving for maturity guarantees: Two approaches, Insurance: Mathematics and Economics, 1997, 21(2): 113−127. doi: 10.1016/S0167-6687(97)00026-7.
|
[4]
|
Boyle, P. P. and Vorst, T., Option replication in discrete time with transaction costs, The Journal of Finance, 1992, 47(1): 271−293. doi: 10.1111/j.1540-6261.1992.tb03986.x.
|
[5]
|
Bratyk, M. and Mishura, Y., The generalization of the quantile hedging problem for price process model involving finite number of Brownian and fractional Brownian motions, Theory of Stochastic Processes, 2008, 14(3): 27−38.
|
[6]
|
Brennan, M. J. and Schwartz, E. S., The pricing of equity-linked life insurance policies with an asset value guarantee, Journal of Financial Economics, 1976, 3(3): 195−213. doi: 10.1016/0304-405X(76)90003-9.
|
[7]
|
Cox, J. C. and Ross, S. A., The valuation of options for alternative stochastic processes, Journal of Financial Economics, 1976, 3(1): 145−166.
|
[8]
|
Dewynne, J. N., Whalley, A. E. and Wilmott, P., Path-dependent options and transaction costs, Philosophical transactions of the royal society of London, Series A: Physical and Engineering Sciences, 1994, 347(1684): 517−529. doi: 10.1098/rsta.1994.0061.
|
[9]
|
Föllmer, H. and Leukert, P., Quantile hedging, Finance and Stochastics, 1999, 3(3): 251−273. doi: 10.1007/s007800050062.
|
[10]
|
Föllmer, H. and Leukert, P., Efficient hedging: Cost versus shortfall risk, finance and stochastics, 2000, 4(2): 117−146. doi: 10.1007/s007800050008.
|
[11]
|
Hodges, S. D., and Neuberger, A., Optimal replication of contingent claims under transaction costs, Review Futures Market, 1989, 8(2): 222−239.
|
[12]
|
Hoggard, T., Whalley, A. E. and Wilmott, P., Option portfolios in the presence of transaction costs, Advances in Futures and Options Research, 1994, 7(4): 21−35.
|
[13]
|
Kirch, M. and Melnikov, A., Efficient hedging and pricing of life insurance policies in a jump-diffusion model, Stochastic Analysis and Applications, 2005, 23(6): 1213−1233. doi: 10.1080/07362990500292692.
|
[14]
|
Leland, H. E., Option portfolios in the presence of transaction costs, In: Boyle, P. P., Pennacchi G. and Ritchken P. (eds.), Advances in Futures and Options Research, 1985, 7(4): 21–35.
|
[15]
|
Melnikov, A. and Petrachenko, Y. G., On option pricing in binomial market with transaction costs, Finance and Stochastics, 2005, 9(1): 141−149. doi: 10.1007/s00780-004-0134-7.
|
[16]
|
Melnikov, A. and Skornyakova, V., Quantile hedging and its application to life insurance, Statistics & Decisions, 2005, 23(4): 301−316.
|
[17]
|
Merton, R. C., Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 1976, 3(1): 125−144.
|
[18]
|
Merton, R. C., Continuous-time Finance, Basil-Blackwell, Cambridge, 1990.
|
[19]
|
Melnikov, A. and Smirnov, I., Dynamic hedging of conditional value-at-risk, Insurance: Mathematics and Economics, 2012, 51(1): 182−190. doi: 10.1016/j.insmatheco.2012.03.011.
|
[20]
|
Melnikov, A. and Tong, S., Quantile hedging on equity-linked life insurance contracts with transaction costs, Insurance:Mathematics and Economics, 2014, 58: 77−88. doi: 10.1016/j.insmatheco.2014.06.005.
|
[21]
|
Toft, K. B., On the mean-variance tradeoff in option replication with transactions costs, The Journal of Financial and Quantitative Analysis, 1996, 31(2): 233−263. doi: 10.2307/2331181.
|
[22]
|
Melnikov, A. and Nosrati, A., Equity-linked Life Insurance Partial Hedging Methods, Chapman and Hall/CRC, 2017.
|
[23]
|
Mocioalca, O., Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 2007, 52(3): 349−366.
|
[24]
|
Zakamulin, V., Option pricing and hedging in the presence of transaction costs and nonlinear partial differential equations, SSRN Electronic Journal, 2008, https://ssrn.com/abstract=938933.
|
[25]
|
Zhou, S., Han, L., Li, W., Zhang, Y. and Han, M., A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process, Computational and Applied Mathematics, 2015, 34(3): 881−900. doi: 10.1007/s40314-014-0156-5.
|