December  2021, 6(4): 343-368. doi: 10.3934/puqr.2021017

CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs

1. 

Department of Mathematical and Statistical Sciences, University of Alberta, T6G 2G1 Edmonton, Canada

Correspondence: hongxi@ualberta.ca

†Equal contributor

Received  February 17, 2021 Accepted  October 29, 2021 Published  December 2021

Fund Project: The authors are grateful to anonymous reviewers and the editors for fruitful suggestions to improve the paper. This research was supported by Natural Sciences and Engineering Research Council of Canada (Grant No. RES0043487).

This paper analyzes Conditional Value-at-Risk (CVaR) based partial hedging and its applications on equity-linked life insurance contracts in a Jump-Diffusion market model with transaction costs. A nonlinear partial differential equation (PDE) that an option value process inclusive of transaction costs should satisfy is provided. In particular, the closed-form expression of a European call option price is given. Meanwhile, the CVaR-based partial hedging strategy for a call option is derived explicitly. Both the CVaR hedging price and the weights of the hedging portfolio are based on an adjusted volatility. We obtain estimated values of expected total hedging errors and total transaction costs by a simulation method. Furthermore,our results are implemented to derive target clients’ survival probabilities and age of equity-linked life insurance contracts.

Citation: Alexander Melnikov, Hongxi Wan. CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 343-368. doi: 10.3934/puqr.2021017
References:
[1]

Amin, K. I., Jump diffusion option valuation in discrete time, The Journal of Finance, 1993, 48(5): 1833−1863. doi: 10.1111/j.1540-6261.1993.tb05130.x.

[2]

Black, F. and Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81(3): 637−654. doi: 10.1086/260062.

[3]

Boyle, P. P. and Hardy, M. R., Reserving for maturity guarantees: Two approaches, Insurance: Mathematics and Economics, 1997, 21(2): 113−127. doi: 10.1016/S0167-6687(97)00026-7.

[4]

Boyle, P. P. and Vorst, T., Option replication in discrete time with transaction costs, The Journal of Finance, 1992, 47(1): 271−293. doi: 10.1111/j.1540-6261.1992.tb03986.x.

[5]

Bratyk, M. and Mishura, Y., The generalization of the quantile hedging problem for price process model involving finite number of Brownian and fractional Brownian motions, Theory of Stochastic Processes, 2008, 14(3): 27−38.

[6]

Brennan, M. J. and Schwartz, E. S., The pricing of equity-linked life insurance policies with an asset value guarantee, Journal of Financial Economics, 1976, 3(3): 195−213. doi: 10.1016/0304-405X(76)90003-9.

[7]

Cox, J. C. and Ross, S. A., The valuation of options for alternative stochastic processes, Journal of Financial Economics, 1976, 3(1): 145−166.

[8]

Dewynne, J. N., Whalley, A. E. and Wilmott, P., Path-dependent options and transaction costs, Philosophical transactions of the royal society of London, Series A: Physical and Engineering Sciences, 1994, 347(1684): 517−529. doi: 10.1098/rsta.1994.0061.

[9]

Föllmer, H. and Leukert, P., Quantile hedging, Finance and Stochastics, 1999, 3(3): 251−273. doi: 10.1007/s007800050062.

[10]

Föllmer, H. and Leukert, P., Efficient hedging: Cost versus shortfall risk, finance and stochastics, 2000, 4(2): 117−146. doi: 10.1007/s007800050008.

[11]

Hodges, S. D., and Neuberger, A., Optimal replication of contingent claims under transaction costs, Review Futures Market, 1989, 8(2): 222−239.

[12]

Hoggard, T., Whalley, A. E. and Wilmott, P., Option portfolios in the presence of transaction costs, Advances in Futures and Options Research, 1994, 7(4): 21−35.

[13]

Kirch, M. and Melnikov, A., Efficient hedging and pricing of life insurance policies in a jump-diffusion model, Stochastic Analysis and Applications, 2005, 23(6): 1213−1233. doi: 10.1080/07362990500292692.

[14]

Leland, H. E., Option portfolios in the presence of transaction costs, In: Boyle, P. P., Pennacchi G. and Ritchken P. (eds.), Advances in Futures and Options Research, 1985, 7(4): 21–35.

[15]

Melnikov, A. and Petrachenko, Y. G., On option pricing in binomial market with transaction costs, Finance and Stochastics, 2005, 9(1): 141−149. doi: 10.1007/s00780-004-0134-7.

[16]

Melnikov, A. and Skornyakova, V., Quantile hedging and its application to life insurance, Statistics & Decisions, 2005, 23(4): 301−316.

[17]

Merton, R. C., Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 1976, 3(1): 125−144.

[18]

Merton, R. C., Continuous-time Finance, Basil-Blackwell, Cambridge, 1990.

[19]

Melnikov, A. and Smirnov, I., Dynamic hedging of conditional value-at-risk, Insurance: Mathematics and Economics, 2012, 51(1): 182−190. doi: 10.1016/j.insmatheco.2012.03.011.

[20]

Melnikov, A. and Tong, S., Quantile hedging on equity-linked life insurance contracts with transaction costs, Insurance:Mathematics and Economics, 2014, 58: 77−88. doi: 10.1016/j.insmatheco.2014.06.005.

[21]

Toft, K. B., On the mean-variance tradeoff in option replication with transactions costs, The Journal of Financial and Quantitative Analysis, 1996, 31(2): 233−263. doi: 10.2307/2331181.

[22]

Melnikov, A. and Nosrati, A., Equity-linked Life Insurance Partial Hedging Methods, Chapman and Hall/CRC, 2017.

[23]

Mocioalca, O., Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 2007, 52(3): 349−366.

[24]

Zakamulin, V., Option pricing and hedging in the presence of transaction costs and nonlinear partial differential equations, SSRN Electronic Journal, 2008, https://ssrn.com/abstract=938933.

[25]

Zhou, S., Han, L., Li, W., Zhang, Y. and Han, M., A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process, Computational and Applied Mathematics, 2015, 34(3): 881−900. doi: 10.1007/s40314-014-0156-5.

show all references

References:
[1]

Amin, K. I., Jump diffusion option valuation in discrete time, The Journal of Finance, 1993, 48(5): 1833−1863. doi: 10.1111/j.1540-6261.1993.tb05130.x.

[2]

Black, F. and Scholes, M., The pricing of options and corporate liabilities, Journal of Political Economy, 1973, 81(3): 637−654. doi: 10.1086/260062.

[3]

Boyle, P. P. and Hardy, M. R., Reserving for maturity guarantees: Two approaches, Insurance: Mathematics and Economics, 1997, 21(2): 113−127. doi: 10.1016/S0167-6687(97)00026-7.

[4]

Boyle, P. P. and Vorst, T., Option replication in discrete time with transaction costs, The Journal of Finance, 1992, 47(1): 271−293. doi: 10.1111/j.1540-6261.1992.tb03986.x.

[5]

Bratyk, M. and Mishura, Y., The generalization of the quantile hedging problem for price process model involving finite number of Brownian and fractional Brownian motions, Theory of Stochastic Processes, 2008, 14(3): 27−38.

[6]

Brennan, M. J. and Schwartz, E. S., The pricing of equity-linked life insurance policies with an asset value guarantee, Journal of Financial Economics, 1976, 3(3): 195−213. doi: 10.1016/0304-405X(76)90003-9.

[7]

Cox, J. C. and Ross, S. A., The valuation of options for alternative stochastic processes, Journal of Financial Economics, 1976, 3(1): 145−166.

[8]

Dewynne, J. N., Whalley, A. E. and Wilmott, P., Path-dependent options and transaction costs, Philosophical transactions of the royal society of London, Series A: Physical and Engineering Sciences, 1994, 347(1684): 517−529. doi: 10.1098/rsta.1994.0061.

[9]

Föllmer, H. and Leukert, P., Quantile hedging, Finance and Stochastics, 1999, 3(3): 251−273. doi: 10.1007/s007800050062.

[10]

Föllmer, H. and Leukert, P., Efficient hedging: Cost versus shortfall risk, finance and stochastics, 2000, 4(2): 117−146. doi: 10.1007/s007800050008.

[11]

Hodges, S. D., and Neuberger, A., Optimal replication of contingent claims under transaction costs, Review Futures Market, 1989, 8(2): 222−239.

[12]

Hoggard, T., Whalley, A. E. and Wilmott, P., Option portfolios in the presence of transaction costs, Advances in Futures and Options Research, 1994, 7(4): 21−35.

[13]

Kirch, M. and Melnikov, A., Efficient hedging and pricing of life insurance policies in a jump-diffusion model, Stochastic Analysis and Applications, 2005, 23(6): 1213−1233. doi: 10.1080/07362990500292692.

[14]

Leland, H. E., Option portfolios in the presence of transaction costs, In: Boyle, P. P., Pennacchi G. and Ritchken P. (eds.), Advances in Futures and Options Research, 1985, 7(4): 21–35.

[15]

Melnikov, A. and Petrachenko, Y. G., On option pricing in binomial market with transaction costs, Finance and Stochastics, 2005, 9(1): 141−149. doi: 10.1007/s00780-004-0134-7.

[16]

Melnikov, A. and Skornyakova, V., Quantile hedging and its application to life insurance, Statistics & Decisions, 2005, 23(4): 301−316.

[17]

Merton, R. C., Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 1976, 3(1): 125−144.

[18]

Merton, R. C., Continuous-time Finance, Basil-Blackwell, Cambridge, 1990.

[19]

Melnikov, A. and Smirnov, I., Dynamic hedging of conditional value-at-risk, Insurance: Mathematics and Economics, 2012, 51(1): 182−190. doi: 10.1016/j.insmatheco.2012.03.011.

[20]

Melnikov, A. and Tong, S., Quantile hedging on equity-linked life insurance contracts with transaction costs, Insurance:Mathematics and Economics, 2014, 58: 77−88. doi: 10.1016/j.insmatheco.2014.06.005.

[21]

Toft, K. B., On the mean-variance tradeoff in option replication with transactions costs, The Journal of Financial and Quantitative Analysis, 1996, 31(2): 233−263. doi: 10.2307/2331181.

[22]

Melnikov, A. and Nosrati, A., Equity-linked Life Insurance Partial Hedging Methods, Chapman and Hall/CRC, 2017.

[23]

Mocioalca, O., Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 2007, 52(3): 349−366.

[24]

Zakamulin, V., Option pricing and hedging in the presence of transaction costs and nonlinear partial differential equations, SSRN Electronic Journal, 2008, https://ssrn.com/abstract=938933.

[25]

Zhou, S., Han, L., Li, W., Zhang, Y. and Han, M., A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process, Computational and Applied Mathematics, 2015, 34(3): 881−900. doi: 10.1007/s40314-014-0156-5.

Figure 1.  Survival probability vs CVaR constraint for life insurance contracts for different revision frequencies, T = 5.
Table 1.  Estimated present values of total hedging errors and total transaction costs with the adjusted volatility $ \hat{\sigma}_1 $, C = 5
Maturity T (years) Revision period CVaR price HE TC HETC
Biweekly 5.46 0.808 0.7688 0.0392
T=1 Weekly 5.7489 1.0306 1.0588 −0.0282
Daily 6.8641 2.2084 2.2208 −0.0124
Biweekly 14.6754 1.4408 1.3929 0.0479
T=3 Weekly 15.1997 1.8731 1.9117 −0.0386
Daily 17.1948 3.9429 3.9721 −0.0292
Biweekly 21.8367 1.6432 1.7092 −0.066
T=5 Weekly 22.488 2.3572 2.3839 −0.0267
Daily 34.958 4.9192 4.9291 −0.0099
Biweekly 35.6998 2.0476 2.083 −0.0354
T=10 Weekly 36.5054 2.9219 2.93 −0.0081
Daily 39.5508 5.9992 5.9938 0.0054
Biweekly 46.291 2.1415 2.1668 −0.0253
T=15 Weekly 47.1447 3.0194 3.0096 0.0098
Daily 50.3664 6.2761 6.2833 −0.0073
Maturity T (years) Revision period CVaR price HE TC HETC
Biweekly 5.46 0.808 0.7688 0.0392
T=1 Weekly 5.7489 1.0306 1.0588 −0.0282
Daily 6.8641 2.2084 2.2208 −0.0124
Biweekly 14.6754 1.4408 1.3929 0.0479
T=3 Weekly 15.1997 1.8731 1.9117 −0.0386
Daily 17.1948 3.9429 3.9721 −0.0292
Biweekly 21.8367 1.6432 1.7092 −0.066
T=5 Weekly 22.488 2.3572 2.3839 −0.0267
Daily 34.958 4.9192 4.9291 −0.0099
Biweekly 35.6998 2.0476 2.083 −0.0354
T=10 Weekly 36.5054 2.9219 2.93 −0.0081
Daily 39.5508 5.9992 5.9938 0.0054
Biweekly 46.291 2.1415 2.1668 −0.0253
T=15 Weekly 47.1447 3.0194 3.0096 0.0098
Daily 50.3664 6.2761 6.2833 −0.0073
Table 2.  Estimated present values of total hedging errors and total transaction costs with the original volatility $ \sigma_1 $, C = 5
Maturity T (years)Revision periodCVaR priceHETCHETC
Biweekly 4.7298 −0.0298 0.8092 −0.839
T=1 Weekly 4.7298 0.0177 1.104 −1.0863
Daily 4.7298 −0.0041 2.4556 −2.4597
Biweekly 13.3329 0.0305 1.4584 −1.427
T=3 Weekly 13.3329 0.0182 2.0448 −2.0266
Daily 13.3329 −0.0018 4.4939 −4.4957
Biweekly 20.1652 −0.0288 1.7894 −1.8182
T=5 Weekly 20.1652 −0.0108 2.5308 −2.5416
Daily 20.1652 −0.0029 5.5339 −5.5368
Biweekly 33.6293 −0.022 2.1664 −2.1884
T=10 Weekly 33.6293 0.0215 3.0789 −3.0574
Daily 33.6293 0.0053 6.7483 −6.743
Biweekly 44.0962 −0.0259 2.2768 −2.3027
T=15 Weekly 44.0962 0.0081 3.2585 −3.2504
Daily 44.0962 0.0035 6.9676 −6.9641
Maturity T (years)Revision periodCVaR priceHETCHETC
Biweekly 4.7298 −0.0298 0.8092 −0.839
T=1 Weekly 4.7298 0.0177 1.104 −1.0863
Daily 4.7298 −0.0041 2.4556 −2.4597
Biweekly 13.3329 0.0305 1.4584 −1.427
T=3 Weekly 13.3329 0.0182 2.0448 −2.0266
Daily 13.3329 −0.0018 4.4939 −4.4957
Biweekly 20.1652 −0.0288 1.7894 −1.8182
T=5 Weekly 20.1652 −0.0108 2.5308 −2.5416
Daily 20.1652 −0.0029 5.5339 −5.5368
Biweekly 33.6293 −0.022 2.1664 −2.1884
T=10 Weekly 33.6293 0.0215 3.0789 −3.0574
Daily 33.6293 0.0053 6.7483 −6.743
Biweekly 44.0962 −0.0259 2.2768 −2.3027
T=15 Weekly 44.0962 0.0081 3.2585 −3.2504
Daily 44.0962 0.0035 6.9676 −6.9641
Table 3.  Estimated present values of total hedging errors and total transaction costs with adjusted volatility $ \hat{\sigma}_1 $ for different levels of CVaR constraint, T = 1
Revision period$CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 7.5$ $CVaR_{0.95}\leq 10$
HETCHETCHETCHETCHETCHETC
Biweekly 0.808 0.7688 0.0392 0.7154 0.7505 −0.0351 0.6769 0.7228 −0.0459
Weekly 1.0306 1.0588 −0.0282 1.0291 1.0622 −0.0331 0.9786 1.0173 −0.0387
Daily 2.2084 2.2208 −0.0124 2.13 2.1519 −0.0219 2.0485 2.065 −0.0165
Revision period$CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 7.5$ $CVaR_{0.95}\leq 10$
HETCHETCHETCHETCHETCHETC
Biweekly 0.808 0.7688 0.0392 0.7154 0.7505 −0.0351 0.6769 0.7228 −0.0459
Weekly 1.0306 1.0588 −0.0282 1.0291 1.0622 −0.0331 0.9786 1.0173 −0.0387
Daily 2.2084 2.2208 −0.0124 2.13 2.1519 −0.0219 2.0485 2.065 −0.0165
Table 4.  Estimated present values of total hedging errors and total transaction costs with original volatility $ {\sigma}_1 $ for different levels of CVaR constraint, T = 1
Revision period$CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 7.5$ $CVaR_{0.95}\leq 10$
HETCHETCHETCHETCHETCHETC
Biweekly −0.0298 0.8092 −0.839 −0.0064 0.7919 −0.7983 −0.0166 0.7383 −0.7549
Weekly 0.0177 1.104 −1.0863 0.0169 1.0956 −1.0787 0.0281 1.0077 −0.9796
Daily −0.0041 2.4556 −2.4597 0.0042 2.3388 −2.3346 0.021 2.255 −2.234
Revision period$CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 7.5$ $CVaR_{0.95}\leq 10$
HETCHETCHETCHETCHETCHETC
Biweekly −0.0298 0.8092 −0.839 −0.0064 0.7919 −0.7983 −0.0166 0.7383 −0.7549
Weekly 0.0177 1.104 −1.0863 0.0169 1.0956 −1.0787 0.0281 1.0077 −0.9796
Daily −0.0041 2.4556 −2.4597 0.0042 2.3388 −2.3346 0.021 2.255 −2.234
Table 5.  Survival probabilities and age of insured in the market with transaction costs
Maturity T (years) $CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 10$
$ {}_{T}p_{x} $ age $ {}_{T}p_{x} $ age
T=3 0.9078 75 0.8237 82
T=5 0.9359 64 0.8762 72
T=10 0.9633 45 0.9284 53
T=15 0.9749 31 0.9507 41
Maturity T (years) $CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 10$
$ {}_{T}p_{x} $ age $ {}_{T}p_{x} $ age
T=3 0.9078 75 0.8237 82
T=5 0.9359 64 0.8762 72
T=10 0.9633 45 0.9284 53
T=15 0.9749 31 0.9507 41
Table 6.  Survival probabilities and age of insured in the complete market
Maturity T (years) $CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 10$
${}_{T}p_{x}$ age ${}_{T}p_{x}$ age
T=3 0.8806 78 0.7741 84
T=5 0.9166 67 0.8398 75
T=10 0.9516 48 0.9058 57
T=15 0.9665 36 0.9343 44
Maturity T (years) $CVaR_{0.95}\leq 5$ $CVaR_{0.95}\leq 10$
${}_{T}p_{x}$ age ${}_{T}p_{x}$ age
T=3 0.8806 78 0.7741 84
T=5 0.9166 67 0.8398 75
T=10 0.9516 48 0.9058 57
T=15 0.9665 36 0.9343 44
[1]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2369-2399. doi: 10.3934/jimo.2021072

[2]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[3]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1689-1707. doi: 10.3934/jimo.2021039

[4]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[5]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

[6]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[7]

Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019

[8]

Antonio Attalienti, Michele Bufalo. Expected vs. real transaction costs in European option pricing. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022063

[9]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. Valuing equity-linked death benefits with a threshold expense structure under a regime-switching Lévy model. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022007

[10]

Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model. Journal of Industrial and Management Optimization, 2015, 11 (2) : 493-514. doi: 10.3934/jimo.2015.11.493

[11]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[12]

Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial and Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044

[13]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[14]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057

[15]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial and Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[16]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[17]

Nana Wan, Li Li, Xiaozhi Wu, Jianchang Fan. Risk minimization inventory model with a profit target and option contracts under spot price uncertainty. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2827-2845. doi: 10.3934/jimo.2021093

[18]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[19]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[20]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial and Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

 Impact Factor: 

Metrics

  • PDF downloads (163)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]