\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the laws of the iterated logarithm with mean-uncertainty under sublinear expectations

The authors thank Professor Li-Xin Zhang for the constructive discussion concerning the relationship between regularity of the sublinear expectation and the existence of countably sub-additive capacity. This work is supported by NSF of Shandong Province (Grant No.ZR2021MA018), National Key R&D Program of China (Grant No.2018YFA0703900), NSF of China (Grant No.11601281) and the Young Scholars Program of Shandong University.

Abstract Full Text(HTML) Related Papers Cited by
  • Mathematics Subject Classification: 60F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    Chen, Z. and Hu, F., A law of the iterated logarithm under sublinear expectations, Journal of Financial Engineering, 2014, 1(2): 1450015.

    doi: 10.1142/S2345768614500159.

    [2]

    Feller, W., The general form of the so-called law of the iterated logarithm, Transactions of the American Mathematical Society, 1943, 54(3): 373−402.

    doi: 10.1090/S0002-9947-1943-0009263-7.

    [3]

    Hu, M., Li, X. and Li, X., Convergence rate of Peng’s law of large numbers under sublinear expectations, Probab. Uncertain. Quant. Risk, 2021, 6(3): 261−266.

    doi: 10.3934/puqr.2021013.

    [4] Guo, X., Li, S. and Li, X., On the Hartman-Wintner law of the iterated logarithm under sublinear expectation, Communications in Statistics-Theory and Methods, 2022, https://doi.org/10.1080/03610926.2022.2026394.
    [5]

    Guo, X. and Li, X., On the laws of large numbers for pseudo-independent random variables under sublinear expectation, Statistic and Probability Letters, 2021, 172: 109042.

    doi: 10.1016/j.spl.2021.109042.

    [6]

    Hartman, P. and Wintner, A., On the law of the iterated logarithm, American Journal of Mathematics, 1941, 63(1): 169−176.

    doi: 10.2307/2371287.

    [7]

    Hu, M. and Li, X., Independence under the G -expectation framework, J. Theor. Probab., 2014, 27: 1011−1020.

    doi: 10.1007/s10959-012-0471-y.

    [8] Kolmogorov, A., Über das Gesetz des iterierten Logarithmus, Mathematische Annalen, 1929, 101: 126–135.
    [9] Ledoux, M. and Talagrand, M., Probability in Banach Spaces: Isoperimetry and Processes, Springer Science & Business Media, 2013.
    [10] Li, S., Li, X. and Yuan, X., Upper and lower variances under model uncertainty and their applications in finance, International Journal of Financial Engineering, 2022, https://doi.org/10.1142/S2424786322500074.
    [11]

    Li, X. and Lin, Y., Generalized Wasserstein distance and weak convergence of sublinear expectations, J. Theor. Probab., 2017, 30: 581−593.

    doi: 10.1007/s10959-015-0651-7.

    [12] Li, X., On the functional central limit theorem with mean-uncertainty, arXiv: 2203.00170, 2022.
    [13] Peng, S., Law of large numbers and central limit theorem under nonlinear expectations, Probab. Uncertain. Quant. Risk, 2019, 4: 4, doi: 10.1186/s41546-019-0038-2.
    [14] Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, Berlin, Heidelberg, 2019.
    [15] Stout, W. F., A martingale analogue of Kolmogorov’s law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie verw Gebiete, 1970, 15: 279–290.
    [16]

    Stout, W. F., The Hartman-Wintner law of the iterated logarithm for martingales, The Annals of Mathematical Statistics, 1970, 41(6): 2158−2160.

    doi: 10.1214/aoms/1177696721.

    [17] Stroock, D. W., Probability Theory: An Analytic View, Cambridge University Press, 1995.
    [18] Walley, P., Statistic Reasoning with Imprecise Probabilities, Chapman and Hall, 1993.
    [19]

    Zhang, L. X., Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Science China Mathematics, 2016, 59(12): 2503−2526.

    doi: 10.1007/s11425-016-0079-1.

    [20]

    Zhang, L. X., On the laws of the iterated logarithm under sub-linear expectations, Probab. Uncertain. Quant. Risk, 2021, 6(4): 409−460.

    doi: 10.3934/puqr.2021020.

  • 加载中
SHARE

Article Metrics

HTML views(290) PDF downloads(316) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return