
-
Previous Article
The Laplace transform as an alternative general method for solving linear ordinary differential equations
- STEME Home
- This Issue
-
Next Article
Examination of modelling in K-12 STEM teacher education: Connecting theory with practice
Daran robot, a reconfigurable, powerful, and affordable robotic platform for STEM education
1. | Department of Mechanical and Aerospace Engineering, Brunel University London, London, UB8 3PN, United Kingdom |
2. | Daran Ltd., Tianjin, 300192, China; 1597255167@qq.com (R.L.); cszhangtju@163.com (C.Z.) |
Robot and programming education, as a key part of STEM education, is attracting more and more attention in the education industry. In this paper, a novel open-sourced educational robotic platform, Daran robot, is proposed with key features in terms of reconfigurable, powerful, and affordable. As an entry-level robotic platform, the Daran robot consists of three individual robots, which are a Mecanum-wheeled robot, a three-wheeled robot, and a 4-DoF robot arm. Both graphical and Python programming environments are developed for students with different entry levels. Thanks to the reconfigurability, four classic constructions of the Daran robot are presented with corresponding case studies, based on which the students can practically learn basic knowledge of sensing and control technologies.
References:
[1] |
Xie, Y., Fang, M. and Shauman, K., STEM education. Annual review of sociology, 2015, 41: 331-357. https://doi.org/10.1146/annurev-soc-071312-145659
doi: 10.1146/annurev-soc-071312-145659. |
[2] |
Zhou C, Li Y., The focus and trend of STEM education research in China-visual analysis based on Citespace. Open Journal of Social Sciences, 2021, 9(7): 168-80. https://doi.org/10.4236/jss.2021.97011
doi: 10.4236/jss.2021.97011. |
[3] |
Elkin M, Sullivan A, Bers MU. Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 2016, 33(3):169-86. https://doi.org/10.1080/07380569.2016.1216251
doi: 10.1080/07380569.2016.1216251. |
[4] |
Mio: https://www.clementoni.com/en/61893-mio-the-robot/. Accessed 17 September 2021 |
[5] |
Cue: https://www.makewonder.com/. Accessed 22 September 2021 |
[6] |
Fischertechnik: https://www.cedutech.com/. Accessed 22 September 2021 |
[7] |
Peng, H. and Huang, Z.C., Design of a welding robot based on Fischertechnik combination model platform. Advanced Materials Research, 2013,619: 384-387. https://doi.org/10.4028/www.scientific.net/AMR.619.384
doi: 10.4028/www.scientific.net/AMR.619.384. |
[8] |
Lego: https://www.lego.com/zh-cn/product/robot-inventor-51515. Accessed 22 September 2021 |
[9] |
ROBOROBO: https://www.roborobo.cn/startpage#. Accessed 22 September 2021 |
[10] |
A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.
![]() |
[11] |
Shigemi, S., Goswami, A. and Vadakkepat, P., ASIMO and humanoid robot research at Honda. In: Goswami A., Vadakkepat P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht, 2018, 55-90. https://doi.org/10.1007/978-94-007-6046-2_9 |
[12] |
Matatalab: https://matatalab.com/zh-hans/product. Accessed 22 September 2021 |
[13] |
Chen, J. Research on design and development of tangible programming curriculum in primary school based on computational thinking -take Matatalab tangible programming robots as an example (in Chinese), Master Thesis, Shanghai International Studies University, 2021. |
[14] |
WeeeMake: https://www.weeemake.com.cn/weeebot-mini. Accessed 22 September 2021 |
[15] |
DFRobot: http://www.dfrobot.cn/?tag=dfrobot. Accessed 22 September 2021 |
[16] |
A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.
![]() |
[17] |
Raspberry Pi Zero W: https://www.raspberrypi.org/products/raspberry-pi-zero-w/. Accessed 17 September 2021 |
[18] |
Sudhakara, P., Ganapathy, V., Priyadharshini, B. and Sundaran, K., Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method. Procedia computer science, 2018,133: 998-1004. https://doi.org/10.1016/j.procs.2018.07.076
doi: 10.1016/j.procs.2018.07.076. |
show all references
References:
[1] |
Xie, Y., Fang, M. and Shauman, K., STEM education. Annual review of sociology, 2015, 41: 331-357. https://doi.org/10.1146/annurev-soc-071312-145659
doi: 10.1146/annurev-soc-071312-145659. |
[2] |
Zhou C, Li Y., The focus and trend of STEM education research in China-visual analysis based on Citespace. Open Journal of Social Sciences, 2021, 9(7): 168-80. https://doi.org/10.4236/jss.2021.97011
doi: 10.4236/jss.2021.97011. |
[3] |
Elkin M, Sullivan A, Bers MU. Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 2016, 33(3):169-86. https://doi.org/10.1080/07380569.2016.1216251
doi: 10.1080/07380569.2016.1216251. |
[4] |
Mio: https://www.clementoni.com/en/61893-mio-the-robot/. Accessed 17 September 2021 |
[5] |
Cue: https://www.makewonder.com/. Accessed 22 September 2021 |
[6] |
Fischertechnik: https://www.cedutech.com/. Accessed 22 September 2021 |
[7] |
Peng, H. and Huang, Z.C., Design of a welding robot based on Fischertechnik combination model platform. Advanced Materials Research, 2013,619: 384-387. https://doi.org/10.4028/www.scientific.net/AMR.619.384
doi: 10.4028/www.scientific.net/AMR.619.384. |
[8] |
Lego: https://www.lego.com/zh-cn/product/robot-inventor-51515. Accessed 22 September 2021 |
[9] |
ROBOROBO: https://www.roborobo.cn/startpage#. Accessed 22 September 2021 |
[10] |
A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.
![]() |
[11] |
Shigemi, S., Goswami, A. and Vadakkepat, P., ASIMO and humanoid robot research at Honda. In: Goswami A., Vadakkepat P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht, 2018, 55-90. https://doi.org/10.1007/978-94-007-6046-2_9 |
[12] |
Matatalab: https://matatalab.com/zh-hans/product. Accessed 22 September 2021 |
[13] |
Chen, J. Research on design and development of tangible programming curriculum in primary school based on computational thinking -take Matatalab tangible programming robots as an example (in Chinese), Master Thesis, Shanghai International Studies University, 2021. |
[14] |
WeeeMake: https://www.weeemake.com.cn/weeebot-mini. Accessed 22 September 2021 |
[15] |
DFRobot: http://www.dfrobot.cn/?tag=dfrobot. Accessed 22 September 2021 |
[16] |
A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.
![]() |
[17] |
Raspberry Pi Zero W: https://www.raspberrypi.org/products/raspberry-pi-zero-w/. Accessed 17 September 2021 |
[18] |
Sudhakara, P., Ganapathy, V., Priyadharshini, B. and Sundaran, K., Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method. Procedia computer science, 2018,133: 998-1004. https://doi.org/10.1016/j.procs.2018.07.076
doi: 10.1016/j.procs.2018.07.076. |







Robotic Platform | Aiming Age | Country | Program Pattern | Assembly needed | Material | Open-sourced | Price (£) |
KIBO [3] | 4-24 | USA | graphical/code | Y | plastic | N | 160-433 |
Mio [4] | 8-12 | USA | graphical/code | N | plastic | N | 156 |
Cue [5] | 5-12 | USA | graphical | Y | plastic | N | 110-147 |
Fischertechnik [6,7] | 13+ | Germany | graphical | Y | plastic | N | - |
Lego [8] | 3-16 | Denmark | graphical | Y | plastic/metal | N | 385 |
ROBOROBO [9,10] | 8-13 | Korea | code | N | metal | N | - |
Honda [11] | 18+ | Japan | graphical | N | plastic | N | - |
Matatalab [12,13] | 4-9 | China | graphical | Y | metal | N | 110-258 |
WeeeMake [14] | 5-12 | China | graphical | N | plastic | N | 114-148 |
DFRobot [15,16] | 7-16 | China | graphical | Y | plastic | N | 29-74 |
Robotic Platform | Aiming Age | Country | Program Pattern | Assembly needed | Material | Open-sourced | Price (£) |
KIBO [3] | 4-24 | USA | graphical/code | Y | plastic | N | 160-433 |
Mio [4] | 8-12 | USA | graphical/code | N | plastic | N | 156 |
Cue [5] | 5-12 | USA | graphical | Y | plastic | N | 110-147 |
Fischertechnik [6,7] | 13+ | Germany | graphical | Y | plastic | N | - |
Lego [8] | 3-16 | Denmark | graphical | Y | plastic/metal | N | 385 |
ROBOROBO [9,10] | 8-13 | Korea | code | N | metal | N | - |
Honda [11] | 18+ | Japan | graphical | N | plastic | N | - |
Matatalab [12,13] | 4-9 | China | graphical | Y | metal | N | 110-258 |
WeeeMake [14] | 5-12 | China | graphical | N | plastic | N | 114-148 |
DFRobot [15,16] | 7-16 | China | graphical | Y | plastic | N | 29-74 |
Robot Name | Dimension (L*W*H, mm) | Weight (g) | Motors No. & torque (Nm) | Power supply (V) | Price (£) |
Mecanum-wheeled robot | 212*164*88 | 942 | 4 / 1.5 | 7.4 | 57 |
Three-wheeled robot | 110*123*90 | 545 | 2 / 1.5 | 7.4 | 25 |
4-DoF robot arm | 158*100*115 | 777 | 4 / 1.5 | 7.4 | 47 |
Control package | / | - | 0 | 7.4 | 92 |
Total | / | 2264 | 10 | 7.4 | 220 |
Robot Name | Dimension (L*W*H, mm) | Weight (g) | Motors No. & torque (Nm) | Power supply (V) | Price (£) |
Mecanum-wheeled robot | 212*164*88 | 942 | 4 / 1.5 | 7.4 | 57 |
Three-wheeled robot | 110*123*90 | 545 | 2 / 1.5 | 7.4 | 25 |
4-DoF robot arm | 158*100*115 | 777 | 4 / 1.5 | 7.4 | 47 |
Control package | / | - | 0 | 7.4 | 92 |
Total | / | 2264 | 10 | 7.4 | 220 |
[1] |
Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005 |
[2] |
Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang. Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2 (1) : 37-46. doi: 10.3934/steme.2022002 |
[3] |
Dragana Martinovic, Marina Milner-Bolotin. Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1 (4) : 279-298. doi: 10.3934/steme.2021018 |
[4] |
. Promoting research training in tertiary education. STEM Education, 2022, 2 (2) : 84-85. doi: 10.3934/steme.2022006 |
[5] |
Zaineb Chelly Dagdia, Ana Cristina Simões e Silva. Effects of COVID-19 pandemic on education and society. STEM Education, 2022, 2 (3) : 197-220. doi: 10.3934/steme.2022013 |
[6] |
Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621 |
[7] |
Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu. Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1 (2) : 114-126. doi: 10.3934/steme.2021009 |
[8] |
Sarai Hedges, Kim Given. Addressing confirmation bias in middle school data science education. Foundations of Data Science, 2022 doi: 10.3934/fods.2021035 |
[9] |
Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2571-2589. doi: 10.3934/dcdss.2020178 |
[10] |
François Alouges, Antonio DeSimone, Luca Heltai, Aline Lefebvre-Lepot, Benoît Merlet. Optimally swimming stokesian robots. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1189-1215. doi: 10.3934/dcdsb.2013.18.1189 |
[11] |
Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437 |
[12] |
Chao Chen, Shanlin Yi, Feng Wang, Chengxi Zhang, Qingmin Yu. Prescribed performance tracking control of multi-link robotic manipulator with uncertainties. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022012 |
[13] |
Kemal Kilic, Menekse G. Saygi, Semih O. Sezer. Exact and heuristic methods for personalized display advertising in virtual reality platforms. Journal of Industrial and Management Optimization, 2019, 15 (2) : 833-854. doi: 10.3934/jimo.2018073 |
[14] |
Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1 |
[15] |
Francis Michael Russell, J. C. Eilbeck. Persistent mobile lattice excitations in a crystalline insulator. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1267-1285. doi: 10.3934/dcdss.2011.4.1267 |
[16] |
Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015 |
[17] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[18] |
Anna Chiara Lai, Paola Loreti. Robot's finger and expansions in non-integer bases. Networks and Heterogeneous Media, 2012, 7 (1) : 71-111. doi: 10.3934/nhm.2012.7.71 |
[19] |
Martijn Bos, Silvio Traversaro, Daniele Pucci, Alessandro Saccon. Efficient geometric linearization of moving-base rigid robot dynamics. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022009 |
[20] |
Ye Jiang, Tiaojun Xiao. Preannouncement strategy of platform-type new product for competing platforms: Technical or marketing information. Journal of Industrial and Management Optimization, 2022, 18 (1) : 315-339. doi: 10.3934/jimo.2020155 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]