February  2022, 2(1): 37-46. doi: 10.3934/steme.2022002

Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective

1. 

Department of Educational Technology, Shanghai Normal University, No.100 Guilin Rd. Shanghai, China; 1114381700@qq.com (Y.Z.); bao@shnu.edu.cn (X.B.)

2. 

Shanghai AI Laboratory, Shanghai, China; 648245013@qq.com

3. 

Center for Future Education, School of Education, Shanghai Jiao Tong University, China

* Correspondence: Email: fkchiang@shnu.edu.cn; Tel: +86-21-6432-8993

Academic Editor: William Guo

Received  October 2021 Revised  February 2022 Published  March 2022

The integration of robotics education with science, technology, engineering, and mathematics (STEM) education has a great potential in future education. In recent years, numerous countries have hosted robotic competitions. This study uses a mixed research method to explore the coaches' views on student participation in the World Robot Olympiad (WRO) by incorporating the questionnaire surveys and interviews conducted at the 2019 WRO finals in Hungary. By quantitative and qualitative analyses, coaches generally agreed that participation in the WRO improved students' STEM learning skills and cultivated their patience and resilience in handling challenging tasks.

Citation: Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang. Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2 (1) : 37-46. doi: 10.3934/steme.2022002
References:
[1]

Schreiner, C., Henriksen, E.K. and Kirkeby Hansen, P.J., Climate Education: Empowering Today's Youth to Meet Tomorrow's Challenges. Studies in Science Education, 2005, 41(1): 3‒49. https://doi.org/10.1080/03057260508560213. doi: 10.1080/03057260508560213.

[2]

Kopcha, T.J., McGregor, J., Shin, S., Qian, Y., Choi, J., Hill, R., Mativo, J. and Choi, I., Developing an Integrative STEM Curriculum for Robotics Education Through Educational Design Research. Journal of Formative Design in Learning, 2017, 1(1): 31‒44. https://doi.org/10.1007/s41686-017-0005-1. doi: 10.1007/s41686-017-0005-1.

[3]

Barnes, J., Fakhrhosseini, S.M., Vasey, E., Park, C.H. and Jeon, M., Child-Robot Theater: Engaging Elementary Students in Informal STEAM Education Using Robots. IEEE Pervasive Computing, 2020, 19(1): 22‒31. https://doi.org/10.1109/MPRV.2019.2940181. doi: 10.1109/MPRV.2019.2940181.

[4]

Plaza, P., Sancristobal, E., Carro, G., Blazquez, M. and Castro, M., Scratch as Driver to Foster Interests for STEM and Educational Robotics. Revista Iberoamericana de Tecnologias del Aprendizaje, 2019, 14(4): 117‒126. https://doi.org/10.1109/RITA.2019.2950130. doi: 10.1109/RITA.2019.2950130.

[5]

Chiang, F. K., Liu, Y. Q., Feng, X., Zhuang, Y. and Sun, Y., Effects of the world robot Olympiad on the students who participate: a qualitative study. Interactive Learning Environments, 2020, (3): 1‒12. https://doi.org/10.1080/10494820.2020.1775097. doi: 10.1080/10494820.2020.1775097.

[6]

Eguchi, A., RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition - ScienceDirect. Robotics and Autonomous Systems, 2016, 75: 692‒699. https://doi.org/10.1016/j.robot.2015.05.013. doi: 10.1016/j.robot.2015.05.013.

[7]

Menekse, M., Higashi, R., Schunn, C. D. and Baehr, E., The Role of Robotics Teams' Collaboration Quality on Team Performance in a Robotics Tournament. Journal of Engineering Education, 2017,106(4): 564‒584. https://doi.org/10.1002/jee.20178. doi: 10.1002/jee.20178.

[8]

Ten Huang, Y., Liu, E. Z.-F., Lin, C.H. and Liou, P.-Y., Developing and Validating a High School Version of the Robotics Motivated Strategies for Learning Questionnaire. International Journal of Online Pedagogy and Course Design, 2017, 7(2): 20‒34. https://doi.org/10.4018/ijopcd.2017040102. doi: 10.4018/ijopcd.2017040102.

[9]

Kaji, Y., Kawata, J. and Fujisawa, S., Educational Effect of Participation in Robot Competition on Experience-Based Learning. Journal of Robotics and Mechatronics, 2019, 31(3): 383‒390. https://doi.org/10.20965/jrm.2019.p0383. doi: 10.20965/jrm.2019.p0383.

[10]

Çetin, M. and Demircan, H. Ö., Empowering technology and engineering for STEM education through programming robots: a systematic literature review. Early Child Development and Care, 2020,190(9): 1323‒1335. https://doi.org/10.1080/03004430.2018.1534844. doi: 10.1080/03004430.2018.1534844.

[11]

Hendricks, C., Alemdar, M. and Ogletree, T., The Impact of Participation in VEX Robotics Competition on Middle and High School Students' Interest in Pursuing STEM Studies and STEM-related Careers. in 2012 ASEE Annual Conference & Exposition. San Antonio, 2012: 25.1312.1‒25.1312.16. https://doi.org/10.18260/1-2--22069.

[12]

Witherspoon, E.B., Schunn, C.D., Higashi, R.M. and Baehr, E.C., Gender, interest, and prior experience shape opportunities to learn programming in robotics competitions. International Journal of Stem Education, 2016, 3(1): 1‒12. https://doi.org/10.1186/s40594-016-0052-1. doi: 10.1186/s40594-016-0052-1.

[13]

Lin, C.H., Liu, E.Z.F. and Huang, Y.Y., Exploring parents' perceptions towards educational robots: Gender and socio‐economic differences. British Journal of Educational Technology, 2012, 43(1): E31‒E34. https://doi.org/10.1111/j.1467-8535.2011.01258.x. doi: 10.1111/j.1467-8535.2011.01258.x.

[14]

Chiang, F.K. and Feng, X., A pilot study of the World Robot Olympiad's Effect on the Participants. in BERA Conference 2018. Newcastle, 2018.

show all references

References:
[1]

Schreiner, C., Henriksen, E.K. and Kirkeby Hansen, P.J., Climate Education: Empowering Today's Youth to Meet Tomorrow's Challenges. Studies in Science Education, 2005, 41(1): 3‒49. https://doi.org/10.1080/03057260508560213. doi: 10.1080/03057260508560213.

[2]

Kopcha, T.J., McGregor, J., Shin, S., Qian, Y., Choi, J., Hill, R., Mativo, J. and Choi, I., Developing an Integrative STEM Curriculum for Robotics Education Through Educational Design Research. Journal of Formative Design in Learning, 2017, 1(1): 31‒44. https://doi.org/10.1007/s41686-017-0005-1. doi: 10.1007/s41686-017-0005-1.

[3]

Barnes, J., Fakhrhosseini, S.M., Vasey, E., Park, C.H. and Jeon, M., Child-Robot Theater: Engaging Elementary Students in Informal STEAM Education Using Robots. IEEE Pervasive Computing, 2020, 19(1): 22‒31. https://doi.org/10.1109/MPRV.2019.2940181. doi: 10.1109/MPRV.2019.2940181.

[4]

Plaza, P., Sancristobal, E., Carro, G., Blazquez, M. and Castro, M., Scratch as Driver to Foster Interests for STEM and Educational Robotics. Revista Iberoamericana de Tecnologias del Aprendizaje, 2019, 14(4): 117‒126. https://doi.org/10.1109/RITA.2019.2950130. doi: 10.1109/RITA.2019.2950130.

[5]

Chiang, F. K., Liu, Y. Q., Feng, X., Zhuang, Y. and Sun, Y., Effects of the world robot Olympiad on the students who participate: a qualitative study. Interactive Learning Environments, 2020, (3): 1‒12. https://doi.org/10.1080/10494820.2020.1775097. doi: 10.1080/10494820.2020.1775097.

[6]

Eguchi, A., RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition - ScienceDirect. Robotics and Autonomous Systems, 2016, 75: 692‒699. https://doi.org/10.1016/j.robot.2015.05.013. doi: 10.1016/j.robot.2015.05.013.

[7]

Menekse, M., Higashi, R., Schunn, C. D. and Baehr, E., The Role of Robotics Teams' Collaboration Quality on Team Performance in a Robotics Tournament. Journal of Engineering Education, 2017,106(4): 564‒584. https://doi.org/10.1002/jee.20178. doi: 10.1002/jee.20178.

[8]

Ten Huang, Y., Liu, E. Z.-F., Lin, C.H. and Liou, P.-Y., Developing and Validating a High School Version of the Robotics Motivated Strategies for Learning Questionnaire. International Journal of Online Pedagogy and Course Design, 2017, 7(2): 20‒34. https://doi.org/10.4018/ijopcd.2017040102. doi: 10.4018/ijopcd.2017040102.

[9]

Kaji, Y., Kawata, J. and Fujisawa, S., Educational Effect of Participation in Robot Competition on Experience-Based Learning. Journal of Robotics and Mechatronics, 2019, 31(3): 383‒390. https://doi.org/10.20965/jrm.2019.p0383. doi: 10.20965/jrm.2019.p0383.

[10]

Çetin, M. and Demircan, H. Ö., Empowering technology and engineering for STEM education through programming robots: a systematic literature review. Early Child Development and Care, 2020,190(9): 1323‒1335. https://doi.org/10.1080/03004430.2018.1534844. doi: 10.1080/03004430.2018.1534844.

[11]

Hendricks, C., Alemdar, M. and Ogletree, T., The Impact of Participation in VEX Robotics Competition on Middle and High School Students' Interest in Pursuing STEM Studies and STEM-related Careers. in 2012 ASEE Annual Conference & Exposition. San Antonio, 2012: 25.1312.1‒25.1312.16. https://doi.org/10.18260/1-2--22069.

[12]

Witherspoon, E.B., Schunn, C.D., Higashi, R.M. and Baehr, E.C., Gender, interest, and prior experience shape opportunities to learn programming in robotics competitions. International Journal of Stem Education, 2016, 3(1): 1‒12. https://doi.org/10.1186/s40594-016-0052-1. doi: 10.1186/s40594-016-0052-1.

[13]

Lin, C.H., Liu, E.Z.F. and Huang, Y.Y., Exploring parents' perceptions towards educational robots: Gender and socio‐economic differences. British Journal of Educational Technology, 2012, 43(1): E31‒E34. https://doi.org/10.1111/j.1467-8535.2011.01258.x. doi: 10.1111/j.1467-8535.2011.01258.x.

[14]

Chiang, F.K. and Feng, X., A pilot study of the World Robot Olympiad's Effect on the Participants. in BERA Conference 2018. Newcastle, 2018.

Figure 1.  The 2018 and 2019 dimension themes mentioned by coaches
Table 1.  Overall sample reliability analysis
Dimension Number of items Number of questions Cronbach's alpha
Learning Skills 195 5 0.828
Engineering Thinking 195 5 0.823
Emotional Engagement 195 2 0.804
Career Choice 195 2 0.712
Problem Solving 195 3 0.820
Collaboration Quality 195 4 0.839
Global Consciousness 195 5 0.798
Dimension Number of items Number of questions Cronbach's alpha
Learning Skills 195 5 0.828
Engineering Thinking 195 5 0.823
Emotional Engagement 195 2 0.804
Career Choice 195 2 0.712
Problem Solving 195 3 0.820
Collaboration Quality 195 4 0.839
Global Consciousness 195 5 0.798
Table 2.  Coach's professional sectors in relation to the seven dimensions
Sector (mean ± standard deviation) F p
Primary School Junior High School Senior High School University Training Agency Others
Learning Skills 22.22±2.45 20.75±3.98 21.41±3.82 22.09±2.70 22.79±2.43 19.67±2.34 2.512 0.031*
Engineering Thinking 21.09±3.05 20.00±3.34 21.47±3.60 21.91±2.39 22.47±2.27 19.33±1.63 3.221 0.008**
Emotional Engagement 8.72±1.39 8.59±1.29 8.40±1.86 9.09±1.14 8.94±1.24 7.83±1.47 1.254 0.286
Career Choice 8.61±1.72 8.47±1.65 8.64±1.56 9.00±0.89 9.00±1.29 7.50±2.07 1.347 0.246
Problem-Solving 12.88±1.78 12.49±2.00 12.93±2.33 13.34±1.20 13.44±1.60 12.17±0.49 1.298 0.266
Collaboration Quality 17.48±2.35 16.49±3.08 17.13±3.19 17.64±1.50 17.11±2.90 16.33±1.21 0.638 0.671
Global Consciousness 21.02±3.70 19.78±4.76 20.96±4.12 22.27±2.76 21.79±3.40 19.96±3.02 1.343 0.248
Note: * means significant at the 0.05 level; ** means significant at the 0.01 level.
Sector (mean ± standard deviation) F p
Primary School Junior High School Senior High School University Training Agency Others
Learning Skills 22.22±2.45 20.75±3.98 21.41±3.82 22.09±2.70 22.79±2.43 19.67±2.34 2.512 0.031*
Engineering Thinking 21.09±3.05 20.00±3.34 21.47±3.60 21.91±2.39 22.47±2.27 19.33±1.63 3.221 0.008**
Emotional Engagement 8.72±1.39 8.59±1.29 8.40±1.86 9.09±1.14 8.94±1.24 7.83±1.47 1.254 0.286
Career Choice 8.61±1.72 8.47±1.65 8.64±1.56 9.00±0.89 9.00±1.29 7.50±2.07 1.347 0.246
Problem-Solving 12.88±1.78 12.49±2.00 12.93±2.33 13.34±1.20 13.44±1.60 12.17±0.49 1.298 0.266
Collaboration Quality 17.48±2.35 16.49±3.08 17.13±3.19 17.64±1.50 17.11±2.90 16.33±1.21 0.638 0.671
Global Consciousness 21.02±3.70 19.78±4.76 20.96±4.12 22.27±2.76 21.79±3.40 19.96±3.02 1.343 0.248
Note: * means significant at the 0.05 level; ** means significant at the 0.01 level.
Table 3.  Competition categories in relation to the seven dimensions
Student competition category (mean ± standard deviation) F p
Regular Category Open Category WRO Football Advanced Robotics Challenge (ARC)
Learning Skills 21.54±3.23 22.50±2.94 21.67±3.76 22.25±3.40 1.078 0.36
Engineering Thinking 20.98±3.28 22.06±2.68 21.48±3.01 22.50±3.11 1.606 0.189
Emotional Engagement 8.53±1.38 9.02±1.31 8.48±2.25 9.00±1.15 1.454 0.229
Career Choice 8.74±1.44 8.88±1.41 7.71±2.15 9.50±1.00 3.555 0.015
Problem-Solving 12.70±2.08 13.51±1.52 13.11±1.44 13.75±1.50 2.456 0.064
Collaboration Quality 16.83±2.84 17.49±2.83 17.85±2.20 17.00±3.56 1.208 0.308
Global Consciousness 20.49±4.06 22.29±3.54 20.90±3.36 22.25±3.40 2.671 0.049*
Note: * means significant at the 0.05 level; ** means significant at the 0.01 level.
Student competition category (mean ± standard deviation) F p
Regular Category Open Category WRO Football Advanced Robotics Challenge (ARC)
Learning Skills 21.54±3.23 22.50±2.94 21.67±3.76 22.25±3.40 1.078 0.36
Engineering Thinking 20.98±3.28 22.06±2.68 21.48±3.01 22.50±3.11 1.606 0.189
Emotional Engagement 8.53±1.38 9.02±1.31 8.48±2.25 9.00±1.15 1.454 0.229
Career Choice 8.74±1.44 8.88±1.41 7.71±2.15 9.50±1.00 3.555 0.015
Problem-Solving 12.70±2.08 13.51±1.52 13.11±1.44 13.75±1.50 2.456 0.064
Collaboration Quality 16.83±2.84 17.49±2.83 17.85±2.20 17.00±3.56 1.208 0.308
Global Consciousness 20.49±4.06 22.29±3.54 20.90±3.36 22.25±3.40 2.671 0.049*
Note: * means significant at the 0.05 level; ** means significant at the 0.01 level.
[1]

Mingfeng Wang, Ruijun Liu, Chunsong Zhang, Zhao Tang. Daran robot, a reconfigurable, powerful, and affordable robotic platform for STEM education. STEM Education, 2021, 1 (4) : 299-308. doi: 10.3934/steme.2021019

[2]

Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005

[3]

Dragana Martinovic, Marina Milner-Bolotin. Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1 (4) : 279-298. doi: 10.3934/steme.2021018

[4]

. Promoting research training in tertiary education. STEM Education, 2022, 2 (2) : 84-85. doi: 10.3934/steme.2022006

[5]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[6]

Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu. Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1 (2) : 114-126. doi: 10.3934/steme.2021009

[7]

Sarai Hedges, Kim Given. Addressing confirmation bias in middle school data science education. Foundations of Data Science, 2022  doi: 10.3934/fods.2021035

[8]

Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2571-2589. doi: 10.3934/dcdss.2020178

[9]

John Hargrove. An example from the world of tsetse flies. Mathematical Biosciences & Engineering, 2013, 10 (3) : 691-704. doi: 10.3934/mbe.2013.10.691

[10]

Richard Boire. Understanding AI in a world of big data. Big Data & Information Analytics, 2018  doi: 10.3934/bdia.2018001

[11]

Chao Chen, Shanlin Yi, Feng Wang, Chengxi Zhang, Qingmin Yu. Prescribed performance tracking control of multi-link robotic manipulator with uncertainties. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022012

[12]

Pau Erola, Albert Díaz-Guilera, Sergio Gómez, Alex Arenas. Modeling international crisis synchronization in the world trade web. Networks and Heterogeneous Media, 2012, 7 (3) : 385-397. doi: 10.3934/nhm.2012.7.385

[13]

Tianyi Li. Does the existence of "talented outliers" help improve team performance? Modeling heterogeneous personalities in teamwork. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2479-2494. doi: 10.3934/jimo.2019064

[14]

Changjun Yu, Honglei Xu, Kok Lay Teo. Preface: Advances in theory and real world applications of control and dynamic optimization. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : i-iii. doi: 10.3934/dcdss.2020094

[15]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[16]

Anna Chiara Lai, Paola Loreti. Robot's finger and expansions in non-integer bases. Networks and Heterogeneous Media, 2012, 7 (1) : 71-111. doi: 10.3934/nhm.2012.7.71

[17]

Almerima Jamakovic, Steve Uhlig. On the relationships between topological measures in real-world networks. Networks and Heterogeneous Media, 2008, 3 (2) : 345-359. doi: 10.3934/nhm.2008.3.345

[18]

Martijn Bos, Silvio Traversaro, Daniele Pucci, Alessandro Saccon. Efficient geometric linearization of moving-base rigid robot dynamics. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022009

[19]

Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071

[20]

Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083

 Impact Factor: 

Metrics

  • PDF downloads (100)
  • HTML views (131)
  • Cited by (0)

[Back to Top]