• Previous Article
    Personalized exercise recommendation method based on causal deep learning: Experiments and implications
  • STEME Home
  • This Issue
  • Next Article
    Fast non-uniform Fourier transform based regularization for sparse-view large-size CT reconstruction
May  2022, 2(2): 140-156. doi: 10.3934/steme.2022010

Predicting how a disrupted semester during the COVID-19 pandemic impacted student learning

1. 

Department of Mathematics, University of Auckland, Auckland, New Zealand

2. 

Department of Mathematics, University of Auckland, Auckland, New Zealand; t.evans@auckland.ac.nz

* Correspondence: Email: krie235@aucklanduni.ac.nz

Academic Editor: Santoso Wibowo
Raw data is available at https://doi.org/10.17608/k6.auckland.19587217

Received  April 2022 Accepted  May 2022 Published  June 2022

Tertiary education faced unprecedented disruption resulting from COVID-19 driven lockdowns around the world, leaving educators with little understanding of how the pandemic and consequential shift to online environments would impact students′ learning. Utilising the theoretical framework of a student′s affective field, this study aimed to investigate how student achievement, achievement-related affect, and self-perceived well-being contributed to predicting how their learning was impacted. Questionnaire responses and academic achievement measures from students (N = 208) in a New Zealand second-year, tertiary mathematics course were analysed. Despite a return to in-person teaching after eliminating community-transmission of the virus, students reported larger impacts of the disruption to semester on both their learning and well-being at the end of the term than during the lockdown. Hierarchical multiple regression revealed that gender, prior achievement, performance on low-stakes assessment, as well as exam-related self-efficacy and hope, made significant, independent contributions to explaining students′ perceived learning impact. Even when controlling for achievement and achievement-related affect, students′ perceived impact to their well-being made a significant and substantial contribution to the impact on their learning. The findings provide motivation to further investigate whether attempts to address student achievement-related affect can help mitigate the effects of major life disruptions on studying. We suggest that frequent, low-stakes assessment can identify students who are more likely to report greater negative impacts to their learning. We finally conclude that student well-being is paramount to how students perceive their own learning, even when controlling for actual measures of and about their achievement.

Citation: Kaitlin Riegel, Tanya Evans. Predicting how a disrupted semester during the COVID-19 pandemic impacted student learning. STEM Education, 2022, 2 (2) : 140-156. doi: 10.3934/steme.2022010
References:
[1]

Zan, R., Brown, L., Evans, J. and Hannula, M.S., Affect in mathematics education: An introduction. Educational Studies in Mathematics, 2006, 63(2): 113-122. https://doi.org/10.1007/s10649-006-9028-2 doi: 10.1007/s10649-006-9028-2.

[2] V.H. WrightC.S. Sunal and E.K. Wilson, Research on enhancing the interactivity of online learning, Information Age Publishing Inc, Greenwich, CT, 2006. 
[3]

Rogowska, A.M., Kuśnierz, C. and Bokszczanin, A., Examining Anxiety, Life Satisfaction, General Health, Stress and Coping Styles During COVID-19 Pandemic in Polish Sample of University Students. Psychology Research and Behavior Management, 2020, 13: 797-811. https://doi.org/10.2147/prbm.s266511 doi: 10.2147/prbm.s266511.

[4]

Li, X., Lv, S., Liu, L., Chen, R., Chen, J., Liang, S., et al., COVID-19 in Guangdong: Immediate Perceptions and Psychological Impact on 304, 167 College Students. Frontiers in Psychology, 2020, 11: 2024. https://doi.org/10.3389/fpsyg.2020.02024 doi: 10.3389/fpsyg.2020.02024.

[5]

Alemany-Arrebola, I., Rojas-Ruiz, G., Granda-Vera, J. and Mingorance-Estrada, Á.C., Influence of COVID-19 on the Perception of Academic Self-Efficacy, State Anxiety, and Trait Anxiety in College Students. Frontiers in Psychology, 2020, 11: 2640. https://doi.org/10.3389/fpsyg.2020.570017 doi: 10.3389/fpsyg.2020.570017.

[6]

Borba, M.C., The future of mathematics education since COVID-19: humans-with-media or humans-with-non-living-things. Educational Studies in Mathematics, 2021, 108: 385-400. https://doi.org/10.1007/s10649-021-10043-2 doi: 10.1007/s10649-021-10043-2.

[7]

Chirinda, B., Ndlovu, M. and Spangenberg, E., Teaching Mathematics during the COVID-19 Lockdown in a Context of Historical Disadvantage. Education Sciences, 2021, 11(4): 177. https://doi.org/10.3390/educsci11040177 doi: 10.3390/educsci11040177.

[8]

Drane, C.F., Vernon, L. and O'Shea, S., Vulnerable learners in the age of COVID-19: A scoping review. Australian Educational Researcher, 2021, 48: 585-604. https://doi.org/10.1007/s13384-020-00409-5 doi: 10.1007/s13384-020-00409-5.

[9]

Gore, J., Fray, L., Miller, A., Harris, J. and Taggart, W., The impact of COVID-19 on student learning in New South Wales primary schools: an empirical study. Australian Educational Researcher, 2021, 48: 605-637. https://doi.org/10.1007/s13384-021-00436-w doi: 10.1007/s13384-021-00436-w.

[10]

Yılmaz, Z., Gülbağcı Dede, H., Sears, R. and Nielsen, S.Y., Are we all in this together?: mathematics teachers' perspectives on equity in remote instruction during pandemic. Educational Studies in Mathematics, 2021, 108: 307-331. https://doi.org/10.1007/s10649-021-10060-1 doi: 10.1007/s10649-021-10060-1.

[11]

Darragh, L. and Franke, N., Lessons from Lockdown: Parent Perspectives on Home-learning Mathematics During COVID-19 Lockdown. International Journal of Science and Mathematics Education, 2021. https://doi.org/10.1007/s10763-021-10222-w doi: 10.1007/s10763-021-10222-w.

[12]

Maciejewski, W., Teaching math in real time. Educational Studies in Mathematics, 2021, 108: 143-159. https://doi.org/10.1007/s10649-021-10090-9 doi: 10.1007/s10649-021-10090-9.

[13]

Sedaghatjou, M., Hughes, J., Liu, M., Ferrara, F., Howard, J. and Mammana, M.F., Teaching STEM online at the tertiary level during the COVID-19 pandemic. International Journal of Mathematical Education in Science and Technology, 2021, 1-17. https://doi.org/10.1080/0020739x.2021.1954251 doi: 10.1080/0020739x.2021.1954251.

[14]

Mullen, C., Pettigrew, J., Cronin, A., Rylands, L. and Shearman, D., The rapid move to online mathematics support: changes in pedagogy and social interaction. International Journal of Mathematical Education in Science and Technology, 2021, 1-28. https://doi.org/10.1080/0020739x.2021.1962555 doi: 10.1080/0020739x.2021.1962555.

[15]

Mendoza, D., Cejas, M., Rivas, G. and Varguillas, C., Anxiety as a prevailing factor of performance of university mathematics students during the COVID-19 pandemic. The Education and Science Journal, 2021, 23(2): 94-113. https://doi.org/10.17853/1994-5639-2021-2-94-113 doi: 10.17853/1994-5639-2021-2-94-113.

[16]

Schindler, M. and Bakker, A. Affective field during collaborative problem posing and problem solving: a case study. Educational Studies in Mathematics, 2020, 105(3): 303-324. https://doi.org/10.1007/s10649-020-09973-0 doi: 10.1007/s10649-020-09973-0.

[17]

Bandura, A., Self-efficacy: The exercise of control, 1997, New York: W.H. Freeman.

[18]

Pajares, F. and Graham, L., Self-Efficacy, Motivation Constructs, and Mathematics Performance of Entering Middle School Students. Contemporary Educational Psychology, 1999, 24(2): 124-139. https://doi.org/10.1006/ceps.1998.0991 doi: 10.1006/ceps.1998.0991.

[19]

Peters, M.L., Examining the relationships among classroom climate, self-efficacy, and achievement in undergraduate mathematics: A multi-level analysis. International Journal of Science and Mathematics Education, 2013, 11: 459-480. https://doi.org/10.1007/s10763-012-9347-y doi: 10.1007/s10763-012-9347-y.

[20]

Zimmerman, B.J., Self-Efficacy: An Essential Motive to Learn. Contemporary Educational Psychology, 2000, 25(1): 82-91. https://doi.org/10.1006/ceps.1999.1016 doi: 10.1006/ceps.1999.1016.

[21]

Alqurashi, E., Predicting student satisfaction and perceived learning within online learning environments. Distance Education, 2019, 40(1): 133-148. https://doi.org/10.1080/01587919.2018.1553562 doi: 10.1080/01587919.2018.1553562.

[22]

Riegel, K., Evans, T. and Stephens, J.M., Predicting mathematics exam-related self-efficacy as a function of prior achievement, gender, stress mindset, and achievement emotions, in Research in Undergraduate Mathematics Education Reports, S. S. Karunakaran & A. Higgins Eds., 2021, 255-263. Retrieved from: http://sigmaa.maa.org/rume/Site/Proceedings.html.

[23]

Marsh, H.W., Pekrun, R., Parker, P.D., Murayama, K., Guo, J., Dicke, T., et al., The murky distinction between self-concept and self-efficacy: Beware of lurking jingle-jangle fallacies. Journal of Educational Psychology, 2019, 111(2): 331-353. https://doi.org/10.1037/edu0000281 doi: 10.1037/edu0000281.

[24]

Nielsen, T., Makransky, G., Vang, M. L. and Dammeyer, J., How specific is specific self-efficacy? A construct validity study using Rasch measurement models. Studies in Educational Evaluation, 2017, 53: 87-97. https://doi.org/10.1016/j.stueduc.2017.04.003 doi: 10.1016/j.stueduc.2017.04.003.

[25]

Pekrun, R., The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 2006, 18(4): 315-341. https://doi.org/10.1007/s10648-006-9029-9 doi: 10.1007/s10648-006-9029-9.

[26]

Mega, C., Ronconi, L. and De Beni, R., What makes a good student? How emotions, self regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 2014, 106(1): 121-131. https://doi.org/10.1037/a0033546 doi: 10.1037/a0033546.

[27]

Peixoto, F., Sanches, C., Mata, L. and Monteiro, V., "How do you feel about math?": relationships between competence and value appraisals, achievement emotions and academic achievement. European Journal of Psychology of Education, 2017, 32(3): 385-405. https://doi.org/10.1007/s10212-016-0299-4 doi: 10.1007/s10212-016-0299-4.

[28]

Pekrun, R., Lichtenfeld, S., Marsh, H.W., Murayama, K. and Goetz, T., Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Child Development, 2017, 88(5): 1653-1670. https://doi.org/10.1111/cdev.12704 doi: 10.1111/cdev.12704.

[29]

Pekrun, R., Murayama, K., Marsh, H.W., Goetz, T. and Frenzel, A.C., Happy fish in little ponds: Testing a reference group model of achievement and emotion. Journal of Personality and Social Psychology, 2019, 117(1): 166-185. https://doi.org/10.1037/pspp0000230 doi: 10.1037/pspp0000230.

[30]

Schukajlow, S. and Rakoczy, K., The power of emotions: Can enjoyment and boredom explain the impact of individual preconditions and teaching methods on interest and performance in mathematics? Learning and Instruction, 2016, 44: 117-127. https://doi.org/10.1016/j.learninstruc.2016.05.001 doi: 10.1016/j.learninstruc.2016.05.001.

[31]

Crum, A.J., Salovey, P. and Achor, S., Rethinking stress: The role of mindsets in determining the stress response. Journal of Personality and Social Psychology, 2013, 104(4): 716-733. https://doi.org/10.1037/a0031201 doi: 10.1037/a0031201.

[32]

Kilby, C.J. and Sherman, K.A., Delineating the relationship between stress mindset and primary appraisals: preliminary findings. SpringerPlus, 2016, 5(336): 1-8. https://doi.org/10.1186/s40064-016-1937-7 doi: 10.1186/s40064-016-1937-7.

[33]

Keech, J.J., Hagger, M.S., O'Callaghan, F.V. and Hamilton, K., The influence of university students' stress mindsets on health and performance outcomes. Annals of Behavioral Medicine, 2018, 52: 1046-1059. https://doi.org/10.1093/abm/kay008 doi: 10.1093/abm/kay008.

[34]

Jenkins, A., Weeks, M.S. and Hard, B.M., General and specific stress mindsets: Links with college student health and academic performance. PLoS ONE, 2021, 16(9): e0256351. https://doi.org/10.1371/journal.pone.0256351 doi: 10.1371/journal.pone.0256351.

[35]

Riegel, K., Evans, T. and Stephens, J.M., Development of the Measure of Assessment Self-Efficacy (MASE) for Mathematics Exams and Quizzes. Unpublished work.

[36]

Pekrun, R., Goetz, T., Frenzel, A.C., Barchfeld, P. and Perry, R.P., Measuring emotions in students' learning and performance: The Achievement Emotions (AEQ). Contemporary Educational Psychology, 2011, 36(1): 36-48. https://doi.org/10.1016/j.cedpsych.2010.10.002 doi: 10.1016/j.cedpsych.2010.10.002.

[37]

Crum, A.J., Akinola, M., Martin, A. and Fath, S., The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress. Anxiety, Stress, & Coping, 2017, 30(4): 379-395. https://doi.org/10.1080/10615806.2016.1275585 doi: 10.1080/10615806.2016.1275585.

[38]

Sotardi, S.A., Bosch, J. and Brogt, E., Multidimensional influences of anxiety and assessment type on task performance. Social Psychology of Education, 2020, 23(2), 499-522. https://doi.org/10.1007/s11218-019-09508-3 doi: 10.1007/s11218-019-09508-3.

[39]

Steinmayr, R., Crede, J., McElvany, N. and Wirthwein, L., Subjective well-being, test anxiety, academic achievement: Testing for reciprocal effects. Frontiers in Psychology, 2016, 6: 1994. https://doi.org/10.3389/fpsyg.2015.01994 doi: 10.3389/fpsyg.2015.01994.

[40]

Evans, T., Kensington-Miller, B. and Novak, J., Effectiveness, efficiency, engagement: Mapping the impact of pre-lecture quizzes on educational exchange. Australasian Journal of Educational Technology, 2021, 37(1): 163-177. https://doi.org/10.14742/ajet.6258 doi: 10.14742/ajet.6258.

[41]

Cepeda, N.J., Pashler, H., Vul, E. and Wixted, J., Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychological Bulletin, 2006, 132(3), 354-380. https://doi.org/10.1037/0033-2909.132.3.354 doi: 10.1037/0033-2909.132.3.354.

show all references

References:
[1]

Zan, R., Brown, L., Evans, J. and Hannula, M.S., Affect in mathematics education: An introduction. Educational Studies in Mathematics, 2006, 63(2): 113-122. https://doi.org/10.1007/s10649-006-9028-2 doi: 10.1007/s10649-006-9028-2.

[2] V.H. WrightC.S. Sunal and E.K. Wilson, Research on enhancing the interactivity of online learning, Information Age Publishing Inc, Greenwich, CT, 2006. 
[3]

Rogowska, A.M., Kuśnierz, C. and Bokszczanin, A., Examining Anxiety, Life Satisfaction, General Health, Stress and Coping Styles During COVID-19 Pandemic in Polish Sample of University Students. Psychology Research and Behavior Management, 2020, 13: 797-811. https://doi.org/10.2147/prbm.s266511 doi: 10.2147/prbm.s266511.

[4]

Li, X., Lv, S., Liu, L., Chen, R., Chen, J., Liang, S., et al., COVID-19 in Guangdong: Immediate Perceptions and Psychological Impact on 304, 167 College Students. Frontiers in Psychology, 2020, 11: 2024. https://doi.org/10.3389/fpsyg.2020.02024 doi: 10.3389/fpsyg.2020.02024.

[5]

Alemany-Arrebola, I., Rojas-Ruiz, G., Granda-Vera, J. and Mingorance-Estrada, Á.C., Influence of COVID-19 on the Perception of Academic Self-Efficacy, State Anxiety, and Trait Anxiety in College Students. Frontiers in Psychology, 2020, 11: 2640. https://doi.org/10.3389/fpsyg.2020.570017 doi: 10.3389/fpsyg.2020.570017.

[6]

Borba, M.C., The future of mathematics education since COVID-19: humans-with-media or humans-with-non-living-things. Educational Studies in Mathematics, 2021, 108: 385-400. https://doi.org/10.1007/s10649-021-10043-2 doi: 10.1007/s10649-021-10043-2.

[7]

Chirinda, B., Ndlovu, M. and Spangenberg, E., Teaching Mathematics during the COVID-19 Lockdown in a Context of Historical Disadvantage. Education Sciences, 2021, 11(4): 177. https://doi.org/10.3390/educsci11040177 doi: 10.3390/educsci11040177.

[8]

Drane, C.F., Vernon, L. and O'Shea, S., Vulnerable learners in the age of COVID-19: A scoping review. Australian Educational Researcher, 2021, 48: 585-604. https://doi.org/10.1007/s13384-020-00409-5 doi: 10.1007/s13384-020-00409-5.

[9]

Gore, J., Fray, L., Miller, A., Harris, J. and Taggart, W., The impact of COVID-19 on student learning in New South Wales primary schools: an empirical study. Australian Educational Researcher, 2021, 48: 605-637. https://doi.org/10.1007/s13384-021-00436-w doi: 10.1007/s13384-021-00436-w.

[10]

Yılmaz, Z., Gülbağcı Dede, H., Sears, R. and Nielsen, S.Y., Are we all in this together?: mathematics teachers' perspectives on equity in remote instruction during pandemic. Educational Studies in Mathematics, 2021, 108: 307-331. https://doi.org/10.1007/s10649-021-10060-1 doi: 10.1007/s10649-021-10060-1.

[11]

Darragh, L. and Franke, N., Lessons from Lockdown: Parent Perspectives on Home-learning Mathematics During COVID-19 Lockdown. International Journal of Science and Mathematics Education, 2021. https://doi.org/10.1007/s10763-021-10222-w doi: 10.1007/s10763-021-10222-w.

[12]

Maciejewski, W., Teaching math in real time. Educational Studies in Mathematics, 2021, 108: 143-159. https://doi.org/10.1007/s10649-021-10090-9 doi: 10.1007/s10649-021-10090-9.

[13]

Sedaghatjou, M., Hughes, J., Liu, M., Ferrara, F., Howard, J. and Mammana, M.F., Teaching STEM online at the tertiary level during the COVID-19 pandemic. International Journal of Mathematical Education in Science and Technology, 2021, 1-17. https://doi.org/10.1080/0020739x.2021.1954251 doi: 10.1080/0020739x.2021.1954251.

[14]

Mullen, C., Pettigrew, J., Cronin, A., Rylands, L. and Shearman, D., The rapid move to online mathematics support: changes in pedagogy and social interaction. International Journal of Mathematical Education in Science and Technology, 2021, 1-28. https://doi.org/10.1080/0020739x.2021.1962555 doi: 10.1080/0020739x.2021.1962555.

[15]

Mendoza, D., Cejas, M., Rivas, G. and Varguillas, C., Anxiety as a prevailing factor of performance of university mathematics students during the COVID-19 pandemic. The Education and Science Journal, 2021, 23(2): 94-113. https://doi.org/10.17853/1994-5639-2021-2-94-113 doi: 10.17853/1994-5639-2021-2-94-113.

[16]

Schindler, M. and Bakker, A. Affective field during collaborative problem posing and problem solving: a case study. Educational Studies in Mathematics, 2020, 105(3): 303-324. https://doi.org/10.1007/s10649-020-09973-0 doi: 10.1007/s10649-020-09973-0.

[17]

Bandura, A., Self-efficacy: The exercise of control, 1997, New York: W.H. Freeman.

[18]

Pajares, F. and Graham, L., Self-Efficacy, Motivation Constructs, and Mathematics Performance of Entering Middle School Students. Contemporary Educational Psychology, 1999, 24(2): 124-139. https://doi.org/10.1006/ceps.1998.0991 doi: 10.1006/ceps.1998.0991.

[19]

Peters, M.L., Examining the relationships among classroom climate, self-efficacy, and achievement in undergraduate mathematics: A multi-level analysis. International Journal of Science and Mathematics Education, 2013, 11: 459-480. https://doi.org/10.1007/s10763-012-9347-y doi: 10.1007/s10763-012-9347-y.

[20]

Zimmerman, B.J., Self-Efficacy: An Essential Motive to Learn. Contemporary Educational Psychology, 2000, 25(1): 82-91. https://doi.org/10.1006/ceps.1999.1016 doi: 10.1006/ceps.1999.1016.

[21]

Alqurashi, E., Predicting student satisfaction and perceived learning within online learning environments. Distance Education, 2019, 40(1): 133-148. https://doi.org/10.1080/01587919.2018.1553562 doi: 10.1080/01587919.2018.1553562.

[22]

Riegel, K., Evans, T. and Stephens, J.M., Predicting mathematics exam-related self-efficacy as a function of prior achievement, gender, stress mindset, and achievement emotions, in Research in Undergraduate Mathematics Education Reports, S. S. Karunakaran & A. Higgins Eds., 2021, 255-263. Retrieved from: http://sigmaa.maa.org/rume/Site/Proceedings.html.

[23]

Marsh, H.W., Pekrun, R., Parker, P.D., Murayama, K., Guo, J., Dicke, T., et al., The murky distinction between self-concept and self-efficacy: Beware of lurking jingle-jangle fallacies. Journal of Educational Psychology, 2019, 111(2): 331-353. https://doi.org/10.1037/edu0000281 doi: 10.1037/edu0000281.

[24]

Nielsen, T., Makransky, G., Vang, M. L. and Dammeyer, J., How specific is specific self-efficacy? A construct validity study using Rasch measurement models. Studies in Educational Evaluation, 2017, 53: 87-97. https://doi.org/10.1016/j.stueduc.2017.04.003 doi: 10.1016/j.stueduc.2017.04.003.

[25]

Pekrun, R., The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 2006, 18(4): 315-341. https://doi.org/10.1007/s10648-006-9029-9 doi: 10.1007/s10648-006-9029-9.

[26]

Mega, C., Ronconi, L. and De Beni, R., What makes a good student? How emotions, self regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 2014, 106(1): 121-131. https://doi.org/10.1037/a0033546 doi: 10.1037/a0033546.

[27]

Peixoto, F., Sanches, C., Mata, L. and Monteiro, V., "How do you feel about math?": relationships between competence and value appraisals, achievement emotions and academic achievement. European Journal of Psychology of Education, 2017, 32(3): 385-405. https://doi.org/10.1007/s10212-016-0299-4 doi: 10.1007/s10212-016-0299-4.

[28]

Pekrun, R., Lichtenfeld, S., Marsh, H.W., Murayama, K. and Goetz, T., Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Child Development, 2017, 88(5): 1653-1670. https://doi.org/10.1111/cdev.12704 doi: 10.1111/cdev.12704.

[29]

Pekrun, R., Murayama, K., Marsh, H.W., Goetz, T. and Frenzel, A.C., Happy fish in little ponds: Testing a reference group model of achievement and emotion. Journal of Personality and Social Psychology, 2019, 117(1): 166-185. https://doi.org/10.1037/pspp0000230 doi: 10.1037/pspp0000230.

[30]

Schukajlow, S. and Rakoczy, K., The power of emotions: Can enjoyment and boredom explain the impact of individual preconditions and teaching methods on interest and performance in mathematics? Learning and Instruction, 2016, 44: 117-127. https://doi.org/10.1016/j.learninstruc.2016.05.001 doi: 10.1016/j.learninstruc.2016.05.001.

[31]

Crum, A.J., Salovey, P. and Achor, S., Rethinking stress: The role of mindsets in determining the stress response. Journal of Personality and Social Psychology, 2013, 104(4): 716-733. https://doi.org/10.1037/a0031201 doi: 10.1037/a0031201.

[32]

Kilby, C.J. and Sherman, K.A., Delineating the relationship between stress mindset and primary appraisals: preliminary findings. SpringerPlus, 2016, 5(336): 1-8. https://doi.org/10.1186/s40064-016-1937-7 doi: 10.1186/s40064-016-1937-7.

[33]

Keech, J.J., Hagger, M.S., O'Callaghan, F.V. and Hamilton, K., The influence of university students' stress mindsets on health and performance outcomes. Annals of Behavioral Medicine, 2018, 52: 1046-1059. https://doi.org/10.1093/abm/kay008 doi: 10.1093/abm/kay008.

[34]

Jenkins, A., Weeks, M.S. and Hard, B.M., General and specific stress mindsets: Links with college student health and academic performance. PLoS ONE, 2021, 16(9): e0256351. https://doi.org/10.1371/journal.pone.0256351 doi: 10.1371/journal.pone.0256351.

[35]

Riegel, K., Evans, T. and Stephens, J.M., Development of the Measure of Assessment Self-Efficacy (MASE) for Mathematics Exams and Quizzes. Unpublished work.

[36]

Pekrun, R., Goetz, T., Frenzel, A.C., Barchfeld, P. and Perry, R.P., Measuring emotions in students' learning and performance: The Achievement Emotions (AEQ). Contemporary Educational Psychology, 2011, 36(1): 36-48. https://doi.org/10.1016/j.cedpsych.2010.10.002 doi: 10.1016/j.cedpsych.2010.10.002.

[37]

Crum, A.J., Akinola, M., Martin, A. and Fath, S., The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress. Anxiety, Stress, & Coping, 2017, 30(4): 379-395. https://doi.org/10.1080/10615806.2016.1275585 doi: 10.1080/10615806.2016.1275585.

[38]

Sotardi, S.A., Bosch, J. and Brogt, E., Multidimensional influences of anxiety and assessment type on task performance. Social Psychology of Education, 2020, 23(2), 499-522. https://doi.org/10.1007/s11218-019-09508-3 doi: 10.1007/s11218-019-09508-3.

[39]

Steinmayr, R., Crede, J., McElvany, N. and Wirthwein, L., Subjective well-being, test anxiety, academic achievement: Testing for reciprocal effects. Frontiers in Psychology, 2016, 6: 1994. https://doi.org/10.3389/fpsyg.2015.01994 doi: 10.3389/fpsyg.2015.01994.

[40]

Evans, T., Kensington-Miller, B. and Novak, J., Effectiveness, efficiency, engagement: Mapping the impact of pre-lecture quizzes on educational exchange. Australasian Journal of Educational Technology, 2021, 37(1): 163-177. https://doi.org/10.14742/ajet.6258 doi: 10.14742/ajet.6258.

[41]

Cepeda, N.J., Pashler, H., Vul, E. and Wixted, J., Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychological Bulletin, 2006, 132(3), 354-380. https://doi.org/10.1037/0033-2909.132.3.354 doi: 10.1037/0033-2909.132.3.354.

Table 1.  T-tests for changes in learning impact, well-being impact, and performance
Mid-semester End of semester 95% CI for
mean difference
t p d
M SD M SD
Learning 5.46 2.63 6.09 2.45 -0.95, -0.32 -3.97 .000 0.28
Wellbeing 5.25 2.59 5.69 2.47 -0.72, -0.17 -3.16 .002 0.22
Performance 74.47 20.29 59.56 29.06 11.80, 18.02 9.44 .000 0.66
Note. N = 208.
Mid-semester End of semester 95% CI for
mean difference
t p d
M SD M SD
Learning 5.46 2.63 6.09 2.45 -0.95, -0.32 -3.97 .000 0.28
Wellbeing 5.25 2.59 5.69 2.47 -0.72, -0.17 -3.16 .002 0.22
Performance 74.47 20.29 59.56 29.06 11.80, 18.02 9.44 .000 0.66
Note. N = 208.
Table 2.  Descriptive statistics and correlations of latent factors in the hierarchical regression
M SD α 1 2 3 4 5 6 7 8 9 10
1. Learning impact 6.09 2.45 -
2. Gender 1.44 0.50 - -.14*
3. Prior achievement 6.54 2.12 - -.17* -.05
4. Test 74.47 20.29 - -.17* -.11 .59**
5. Exam 59.56 29.06 - -.20** -.08 .56** .63**
6. Quizzes 88.19 16.98 - -.28** -.04 .54** .56** .57**
7. Self-efficacy 59.31 19.53 .94 -.26** .04 .35** .42** .44** .35**
8. Hope 3.03 0.69 - -.26** -.07 .26** .34** .35** .28** .60**
9. Stress-is-enhancing 3.04 0.79 .78 .06 -.03 .10 .18* .10 .04 .11 .10
10. Stress-is-debilitating 3.22 0.73 .75 -.04 .03 -.17* -.18** -.15* -.14* -.12* -.11 -.55**
11. Well-being impact 5.69 2.47 - .79** -.11 -.16* -.12* -.08 -.19** -.24** -.19** .04 .02
Note. **Correlation is significant at the 0.005 level; *Correlation is significant at the 0.05 level; Gender (Male = 1, Female = 2); N = 208.
M SD α 1 2 3 4 5 6 7 8 9 10
1. Learning impact 6.09 2.45 -
2. Gender 1.44 0.50 - -.14*
3. Prior achievement 6.54 2.12 - -.17* -.05
4. Test 74.47 20.29 - -.17* -.11 .59**
5. Exam 59.56 29.06 - -.20** -.08 .56** .63**
6. Quizzes 88.19 16.98 - -.28** -.04 .54** .56** .57**
7. Self-efficacy 59.31 19.53 .94 -.26** .04 .35** .42** .44** .35**
8. Hope 3.03 0.69 - -.26** -.07 .26** .34** .35** .28** .60**
9. Stress-is-enhancing 3.04 0.79 .78 .06 -.03 .10 .18* .10 .04 .11 .10
10. Stress-is-debilitating 3.22 0.73 .75 -.04 .03 -.17* -.18** -.15* -.14* -.12* -.11 -.55**
11. Well-being impact 5.69 2.47 - .79** -.11 -.16* -.12* -.08 -.19** -.24** -.19** .04 .02
Note. **Correlation is significant at the 0.005 level; *Correlation is significant at the 0.05 level; Gender (Male = 1, Female = 2); N = 208.
Table 3.  Hierarchical regression coefficients for perceived learning impact at the end of semester
β for student perception of learning impact
Variable Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9
Gender -.14* -.15* -.16* -.16* -.16* -.14* -.16* -.16* -.07
Prior achievement -.18* -.11 -.07 -.02 .00 -.01 -.01 .06
Test -.12 -.06 .00 .04 .05 .03 .03
Exam -.14 -.07 -.03 -.01 -.01 -.12*
Quizzes -.25* -.23* -.23* -.23* -.12*
Self-efficacy -.17* -.07 -.08 .05
Hope -.18* -.18* -.12*
Stress-is-enhancing .05 -.01
Stress-is-debilitating -.06 -.08
Well-being impact .75**
$ {R}_{adj}^{2} $ .02* .04** .05** .05** .09** .10** .12** .12** .65**
$ {\mathrm{\Delta }R}_{adj}^{2} $ .03* .01 .01 .03* .02* .02* .00 .53**
Note. **p < .005; *p < .05; N = 208.
β for student perception of learning impact
Variable Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9
Gender -.14* -.15* -.16* -.16* -.16* -.14* -.16* -.16* -.07
Prior achievement -.18* -.11 -.07 -.02 .00 -.01 -.01 .06
Test -.12 -.06 .00 .04 .05 .03 .03
Exam -.14 -.07 -.03 -.01 -.01 -.12*
Quizzes -.25* -.23* -.23* -.23* -.12*
Self-efficacy -.17* -.07 -.08 .05
Hope -.18* -.18* -.12*
Stress-is-enhancing .05 -.01
Stress-is-debilitating -.06 -.08
Well-being impact .75**
$ {R}_{adj}^{2} $ .02* .04** .05** .05** .09** .10** .12** .12** .65**
$ {\mathrm{\Delta }R}_{adj}^{2} $ .03* .01 .01 .03* .02* .02* .00 .53**
Note. **p < .005; *p < .05; N = 208.
[1]

Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108

[2]

Qi Luo, Ryan Weightman, Sean T. McQuade, Mateo Díaz, Emmanuel Trélat, William Barbour, Dan Work, Samitha Samaranayake, Benedetto Piccoli. Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : 443-466. doi: 10.3934/nhm.2022016

[3]

Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008

[4]

Zaineb Chelly Dagdia, Ana Cristina Simões e Silva. Effects of COVID-19 pandemic on education and society. STEM Education, 2022, 2 (3) : 197-220. doi: 10.3934/steme.2022013

[5]

Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093

[6]

Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026

[7]

Monique Chyba, Rinaldo M. Colombo, Mauro Garavello, Benedetto Piccoli. Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : i-ii. doi: 10.3934/nhm.2022020

[8]

Gabriel Illanes, Ernesto Mordecki, Andrés Sosa. On the impact of the Covid-19 health crisis on GDP forecasting: An empirical approach. Journal of Dynamics and Games, 2022, 9 (3) : 229-239. doi: 10.3934/jdg.2022008

[9]

Haitao Song, Fang Liu, Feng Li, Xiaochun Cao, Hao Wang, Zhongwei Jia, Huaiping Zhu, Michael Y. Li, Wei Lin, Hong Yang, Jianghong Hu, Zhen Jin. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5757-5777. doi: 10.3934/dcdsb.2021294

[10]

Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088

[11]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[12]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[13]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics and Games, 2021, 8 (3) : 167-186. doi: 10.3934/jdg.2021004

[14]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[15]

Yanfei Zhao, Yepeng Xing. A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5367-5387. doi: 10.3934/dcdsb.2021278

[16]

Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021234

[17]

Xia Li, Chuntian Wang, Hao Li, Andrea L. Bertozzi. A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies. Networks and Heterogeneous Media, 2022, 17 (3) : 311-331. doi: 10.3934/nhm.2022009

[18]

Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581-606. doi: 10.3934/mbe.2017034

[19]

Fabio Augusto Milner. How Do Nonreproductive Groups Affect Population Growth?. Mathematical Biosciences & Engineering, 2005, 2 (3) : 579-590. doi: 10.3934/mbe.2005.2.579

[20]

Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]