
ISSN:
1078-0947
eISSN:
1553-5231
All Issues
Discrete and Continuous Dynamical Systems
October 2017 , Volume 37 , Issue 10
Select all articles
Export/Reference:
In this paper, we study the global existence and stability problem of a perturbed viscous circulatory flow around a disc. This flow is described by two-dimensional Navier-Stokes equations. By introducing some suitable weighted energy space and establishing a priori estimates, we show that the 2-D circulatory flow is globally stable in time when the corresponding initial-boundary values are perturbed sufficiently small.
We prove that any
In this paper, we study the explosive solutions to a class of parbolic stochastic semilinear differential equations driven by a Lévy type noise. The sufficient conditions are presented to guarantee the existence of a unique positive solution of the stochastic partial differential equation under investigation. Moreover, we show that positive solutions will blow up in finite time in mean Lp-norm sense, provided that the initial data, the nonlinear term and the multiplicative noise satisfies some conditions. Several examples are presented to illustrate the theory. Finally, we establish a global existence theorem based on a Lyapunov functional and prove that a stochastic Allen-Cahn equation driven by Lévy noise has a global solution.
We study the global bifurcation and exact multiplicity of positive solutions for the positone multiparameter problem
where λ > 0 is a bifurcation parameter and
We study the long-time asymptotic behaviour of viscosity solutions $u(x,~t)$ of the Hamilton-Jacobi equation
The aim of the paper is to unify the efforts in the study of integrable billiards within quadrics in flat and curved spaces and to explore further the interplay of symplectic and contact integrability. As a starting point in this direction, we consider virtual billiard dynamics within quadrics in pseudo-Euclidean spaces. In contrast to the usual billiards, the incoming velocity and the velocity after the billiard reflection can be at opposite sides of the tangent plane at the reflection point. In the symmetric case we prove noncommutative integrability of the system and give a geometrical interpretation of integrals, an analog of the classical Chasles and Poncelet theorems and we show that the virtual billiard dynamics provides a natural framework in the study of billiards within quadrics in projective spaces, in particular of billiards within ellipsoids on the sphere
We extend the Phase Transition model for traffic proposed in [
We study the behavior as
satisfying the parabolic Choquard-Pekar type inequalities
where
We exhibit different examples of minimal sets for an IFS of homeomorphisms with rational rotation number. It is proved that these examples are, from a topological point of view, the unique possible cases.
We consider a multi-dimensional billiard system in an
Since the problem is local, the billiard hypersurface can be determined as the graphs of the functions
In this short note we establish a law of large permanent for matrices with entries from an
In this paper, we consider the following semilinear elliptic problem
where $\frac{N}{N-2} < q < p < p^*$ or $q>p>p^*$, $p^*=\frac{N+2}{N-2}$, $N≥3$. We show that if $q$ is fixed and $p$ is close enough to $\frac{N+2}{N-2}$, the above problem has radial nodal bubble tower solutions, which behave like a superposition of bubbles with different orders and blow up at the origin.
In the paper we study the problem of the influence of the parametric uncertainties on the Bohl exponents of discrete time-varying linear system. We obtain formulas for the computation of the exact boundaries of lower and upper mobility for the supremum and infimum of the Bohl exponents under arbitrary small perturbations of system coefficients matrices on the basis of the transition matrix.
We study the Bonsall cone spectral radius and the approximate point spectrum of (in general non-linear) positively homogeneous, bounded and supremum preserving maps, defined on a max-cone in a given normed vector lattice. We prove that the Bonsall cone spectral radius of such maps is always included in its approximate point spectrum. Moreover, the approximate point spectrum always contains a (possibly trivial) interval. Our results apply to a large class of (nonlinear) max-type operators.
We also generalize a known result that the spectral radius of a positive (linear) operator on a Banach lattice is contained in the approximate point spectrum. Under additional generalized compactness type assumptions our results imply Krein-Rutman type results.
In this paper, we prove Strichartz estimates for
We describe the multifractal nature of random weak Gibbs measures on some classes of attractors associated with
In this article we obtain a variational principle for saturated sets for maps with some non-uniform specification properties. More precisely, we prove that the topological entropy of saturated sets coincides with the smallest measure theoretical entropy among the invariant measures in the accumulation set. Using this fact we provide lower bounds for the topological entropy of the irregular set and the level sets in the multifractal analysis of Birkhoff averages for continuous observables. The topological entropy estimates use as tool a non-uniform specification property on topologically large sets, which we prove to hold for open classes of non-uniformly expanding maps. In particular we prove some multifractal analysis results for C1-open classes of non-uniformly expanding local diffeomorphisms and Viana maps [
This paper will mainly study the information about the existence and stability of the invasion traveling waves for the nonlocal Leslie-Gower predator-prey model. By using an invariant cone in a bounded domain with initial function being defined on and applying the Schauder's fixed point theorem, we can obtain the existence of traveling waves. Here, the compactness of the support set of dispersal kernel is needed when passing to an unbounded domain in the proof. Then we use the weighted energy to prove that the invasion traveling waves are exponentially stable as perturbation in some exponentially as
We show that for any set of
Let Ω be a bounded domain in
where
2020
Impact Factor: 1.392
5 Year Impact Factor: 1.610
2020 CiteScore: 2.2
Readers
Authors
Editors
Referees
Librarians
Special Issues
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]