
ISSN:
1078-0947
eISSN:
1553-5231
All Issues
Discrete & Continuous Dynamical Systems - A
November 2018 , Volume 38 , Issue 11
Select all articles
Export/Reference:
In this paper, we study the existence and the nonexistence of positive classical solutions of the static Hartree-Poisson equation
where
When
with the help of an integral system involving the Newton potential, where
Consider the space of analytic, quasi-periodic cocycles on the higher dimensional torus. We provide examples of cocycles with nontrivial Lyapunov spectrum, whose homotopy classes do not contain any cocycles satisfying the dominated splitting property. This shows that the main result in the recent work "Complex one-frequency cocycles" by A. Avila, S. Jitomirskaya and C. Sadel does not hold in the higher dimensional torus setting.
In this paper, we study the following nonlinear Dirac equation
where
In this paper, we propose a two-component
We examine the
where
with some regular and symmetric, but in general not explicitely known function
In this paper, we study the following nonlinear Schrödinger-Poisson system
where
In this paper, we consider the orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity, which admits the single peakons and multi-peakons. We firstly show the existence of the single peakon and prove two useful conservation laws. Then by constructing certain Lyapunov functionals, we give the proof of stability result of peakons in the energy space
This paper is concerned with a two-component integrable Camassa-Holm type system with arbitrary smooth function
This article is concerned with the large data global regularity for the equivariant case of the classical Skyrme model and proves that this is valid for initial data in
Let
In this paper, we prove a well posedness result for an initial boundary value problem for a stochastic nonlocal reaction-diffusion equation with nonlinear diffusion together with a nul-flux boundary condition in an open bounded domain of
This work concerns the problem associated with averaging principle for a stochastic Kuramoto-Sivashinsky equation with slow and fast time-scales. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the stochastic Kuramoto-Sivashinsky equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single stochastic Kuramoto-Sivashinsky equation with a modified coefficient.
In this paper we investigate an alternating direction implicit (ADI) time integration scheme for the linear Maxwell equations with currents, charges and conductivity. We show its stability and efficiency. The main results establish that the scheme converges in a space similar to
Local correlation entropy, introduced by Takens in 1983, represents the exponential decay rate of the relative frequency of recurrences in the trajectory of a point, as the embedding dimension grows to infinity. In this paper we study relationship between the supremum of local correlation entropies and the topological entropy. For dynamical systems on topological graphs we prove that the two quantities coincide. Moreover, there is an uncountable set of points with local correlation entropy arbitrarily close to the topological entropy. On the other hand, we construct a strictly ergodic subshift with positive topological entropy having all local correlation entropies equal to zero. As a necessary tool, we derive an expected relationship between the local correlation entropies of a system and those of its iterates.
We prove a new generation result in $L^1$ for a large class of non-local operators with non-degenerate local terms. This class contains the operators appearing in Fokker-Planck or Kolmogorov forward equations associated with Lévy driven SDEs, i.e. the adjoint operators of the infinitesimal generators of these SDEs. As a byproduct, we also obtain a new elliptic regularity result of independent interest. The main novelty in this paper is that we can consider very general Lévy operators, including state-space depending coefficients with linear growth and general Lévy measures which can be singular and have fat tails.
We improve previous results on dispersion decay for 3D KleinGordon equation with generic potential. We develop a novel approach, which allows us to establish the decay in more strong norms and to weaken assumptions on the potential.
Given a nonlinear control system depending on two controls
In this paper, we consider nonlocal Schrödinger equations with certain potentials
where
where
We consider a class of parametric Schrödinger equations driven by the fractional
Let X be a two-sided subshift on a finite alphabet endowed with a mixing probability measure which is positive on all cylinders in X. We show that there exists an arbitrarily small finite overlapping union of shifted cylinders which intersects every orbit under the shift map.
We also show that for any proper subshift Y of X there exists a finite overlapping unions of shifted cylinders such that its survivor set contains Y (in particular, it can have entropy arbitrarily close to the entropy of X). Both results may be seen as somewhat counter-intuitive.
Finally, we apply these results to a certain class of hyperbolic algebraic automorphisms of a torus.
Translating soliton is a special solution for the mean curvature flow (MCF) and the parabolic rescaling model of type Ⅱ singularities for the MCF. By introducing an appropriate coordinate transformation, we first show that there exist complete helicoidal translating solitons for the MCF in
We introduce a method to study the long-time behavior of solutions to damped wave equations, where the coefficients of the equations are space-time dependent. We show that solutions exhibit the diffusion phenomenon, connecting their asymptotic behaviors with the asymptotic behaviors of solutions to corresponding parabolic equations. Sharp decay estimates for solutions to damped wave equations are given, and decay estimates for derivatives of solutions are also discussed.
In a bounded domain
with homogeneous Neumann boundary conditions. We will find that the condition
2019 Impact Factor: 1.338
Readers
Authors
Editors
Referees
Librarians
More
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]