
ISSN:
1078-0947
eISSN:
1553-5231
All Issues
Discrete and Continuous Dynamical Systems
August 2019 , Volume 39 , Issue 8
Select all articles
Export/Reference:
Given a one-dimensional shift
We study the representation formulae for the fundamental solutions and viscosity solutions of the Hamilton-Jacobi equations of contact type. We also obtain a vanishing contact structure result for relevant Cauchy problems which can be regarded as an extension to the vanishing discount problem.
In this paper we prove local smoothing estimates for the Dirac equation on some non-flat manifolds; in particular, we will consider asymptotically flat and warped products metrics. The strategy of the proofs relies on the multiplier method.
We present an exact solution to the nonlinear governing equations in the
We consider the ocean flow of the Antarctic Circumpolar Current. Using a recently-derived model for gyres in rotating spherical coordinates, and mapping the problem on the sphere onto the plane using the Mercator projection, we obtain a boundary-value problem for a semi-linear elliptic partial differential equation. For constant and linear oceanic vorticities, we investigate existence, regularity and uniqueness of solutions to this elliptic problem. We also provide some explicit solutions. Moreover, we examine the physical relevance of these results.
We investigate solutions for nonlinear operator equations and obtain some abstract existence results by linking methods. Some well-known theorems about periodic solutions for second-order Hamiltonian systems by M. Schechter are special cases of these results.
A class of non-stationary surface gravity waves propagating in the zonal direction in the equatorial region is described in the f-plane approximation. These waves are described by exact solutions of the equations of hydrodynamics in Lagrangian formulation and are generalizations of Gerstner waves. The wave shape and non-uniform pressure distribution on a free surface depend on two arbitrary functions. The trajectories of fluid particles are circumferences. The solutions admit a variable meridional current. The dynamics of a single breather on the background of a Gerstner wave is studied as an example.
Spatially periodic solutions of the Fornberg-Whitham equation are studied to illustrate the mechanism of wave breaking and the formation of shocks for a large class of initial data. We show that these solutions can be considered to be weak solutions satisfying the entropy condition. By numerical experiments, we show that the breaking waves become shock-wave type in the time evolution.
The existence of internal geophysical waves of extreme form is confirmed and an explicit solution presented. The flow is confined to a layer lying above an eastward current while the mean horizontal flow of the solutions is westward, thus incorporating flow reversal in the fluid.
We investigate the solvability of the Ambrosetti-Prodi problem for the p-Laplace operator ∆p with Venttsel' boundary conditions on a twodimensional open bounded set with Koch-type boundary, and on an open bounded three-dimensional cylinder with Koch-type fractal boundary. Using a priori estimates, regularity theory and a sub-supersolution method, we obtain a necessary condition for the non-existence of solutions (in the weak sense), and the existence of at least one globally bounded weak solution. Moreover, under additional conditions, we apply the Leray-Schauder degree theory to obtain results about multiplicity of weak solutions.
A two-layer fluid system separated by a pycnocline in the form of an internal wave is considered. The lower layer is infinitely deep, with a higher density than the upper layer which is bounded above by a flat surface. The fluids are incompressible and inviscid. A Hamiltonian formulation for the dynamics in the presence of a depth-varying current is presented and it is shown that an appropriate scaling leads to the integrable Benjamin-Ono equation.
Our aim is to study the effect of a continuous prescribed density variation on the propagation of ocean waves. More precisely, we derive KdV-type shallow water model equations for unidirectional flows along the Equator from the full governing equations by taking into account a prescribed but arbitrary depth-dependent density distribution. In contrast to the case of constant density, we obtain for each fixed water depth a different model equation for the horizontal component of the velocity field. We derive explicit formulas for traveling wave solutions of these model equations and perform a detailed analysis of the effect of a given density distribution on the depth-structure of the corresponding traveling waves.
There are not too many known explicit solutions to the
We present a more general method for constructing new explicit solutions in Lagrangian coordinates which contain as special cases all previously known ones. This new approach shows that in fact "harmonic labelings" are special cases of a much larger family.
In the classical solutions, the matrix Lie groups were essential in describing the time evolution. We see that also the geodesics in these groups are important.
We undertake a comprehensive study for the fractional nonlinear Schrödinger equation
where
We propose the Chern-Simons gauged sigma model from $\mathbb{R}^{1+2}$ into the hyperbolic plane $\mathbb{H}^2$. We seek a static configuration of this model and derive self-dual equations. We also establish some existence results for solutions of the self-dual equations under appropriate boundary conditions near $\infty$
Let
Of concern are steady two-dimensional periodic geophysical water waves of small amplitude near the equator. The analysis presented here is based on the bifurcation theory due to Crandall-Rabinowitz. Dispersion relations for various choices of the vorticity distribution, including constant, affine, and some nonlinear vorticities are obtained.
We consider certain solutions of the Infinity-Laplace Equation in planar convex rings. Their ascending streamlines are unique while the descending ones may bifurcate. We prove that bifurcation occurs in the generic situation and as a consequence, the solutions cannot have Lipschitz continuous gradients.
We consider nonlinear traveling waves in a two-dimensional fluid subject to the effects of vorticity, stratification, and in-plane Coriolis forces. We first observe that the terms representing the Coriolis forces can be completely eliminated by a change of variables. This does not appear to be well-known, and helps to organize some of the existing literature.
Second we give a rigorous existence result for periodic waves in a two-layer system with a free surface and constant densities and vorticities in each layer, allowing for the presence of critical layers. We augment the problem with four physically-motivated constraints, and phrase our hypotheses directly in terms of the explicit dispersion relation for the problem. This approach smooths the way for further generalizations, some of which we briefly outline at the end of the paper.
We present some results on the existence and uniqueness of solutions of a two-point nonlinear boundary value problem that arises in the modeling of the flow of the Antarctic Circumpolar Current.
The aim of the paper is to develop an exact solution relating to a system of model equations representing ocean flows with Equatorial Undercurrent and thermocline in the presence of linear variation of density with depth. The system of equations is generated from the Euler equations represented in a suitable rotating frame by following a careful asymptotic approach.The study in this paper is motivated by the recently developed Constantin-Johnson model [
In this paper, we study the convergence and pathwise dynamics of random differential equations driven by colored noise. We first show that the solutions of the random differential equations driven by colored noise with a nonlinear diffusion term uniformly converge in mean square to the solutions of the corresponding Stratonovich stochastic differential equation as the correlation time of colored noise approaches zero. Then, we construct random center manifolds for such random differential equations and prove that these manifolds converge to the random center manifolds of the corresponding Stratonovich equation when the noise is linear and multiplicative as the correlation time approaches zero.
We provide an example of a Schrödinger cocycle over a mixing Markov shift for which the integrated density of states has a very weak modulus of continuity, close to the log-Hölder lower bound established by W. Craig and B. Simon in [
We consider the Euler equation of functionals involving a term of the form
with
The Chern-Simons-Higgs and the Chern-Simons-Dirac systems in Lorenz gauge are locally well-posed in suitable Fourier-Lebesgue spaces
We are concerned with conservative systems
2020
Impact Factor: 1.392
5 Year Impact Factor: 1.610
2020 CiteScore: 2.2
Readers
Authors
Editors
Referees
Librarians
Special Issues
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]