
ISSN:
1547-5816
eISSN:
1553-166X
All Issues
Journal of Industrial and Management Optimization
October 2018 , Volume 14 , Issue 4
Select all articles
Export/Reference:
This paper considers an unobservable M/G/1 queue with Bernoulli vacations in which the server begins a vacation when the system is empty or upon completing a service. In the latter case, the server takes a vacation with p or serves the next customer, if any, with 1-p. We first give the steady-state equations and some performance measures, and then study the customer strategic behavior and obtain customers' Nash equilibrium strategies. From the viewpoint of the social planner, we derive the socially optimal joining probability, the socially optimal vacation probability and the socially optimal vacation rate. The socially optimal joining probability is found not greater than the equilibrium probability. In addition, if the vacation scheme does not incur any cost, the socially optimal decision is that the server does not take either a Bernoulli vacation or the normal vacation. On the other hand, if the server incurs the costs due to the underlying loss and the technology upgrade, proper vacations are beneficial to the social welfare maximization. Finally, sensitivity analysis is also performed to explore the effect of different parameters, and some managerial insights are provided for the social planner.
This paper derives the optimal debt ratio, investment and dividend payment strategies for an insurance company. The surplus process is jointly determined by the reinsurance strategies, debt levels, investment portfolios and unanticipated shocks. The objective is to maximize the total expected discounted utility of dividend payments in finite-time period subject to three control variables. The utility functions are chosen as the logarithmic and power utility functions. Using dynamic programming principle, the value function is the solution of a second-order nonlinear Hamilton-Jacobi-Bellman equation. The explicit solution of the value function is derived and the corresponding optimal debt ratio, investment and dividend payment strategies are obtained. In addition, the investment borrowing constraint, dividend payment constraint and impacts of reinsurance policies are considered and their impacts on the optimal strategies are analyzed. Further, to incorporating the interest rate risk, the problem is studied under a stochastic interest rate model.
In this paper, we present an optimal feedback control model to deal with the problem of energy efficiency management. Especially, an emission permits trading scheme is considered in our model, in which the decision maker can trade the emission permits flexibly. We make use of the optimal control theory to derive a Hamilton-Jacobi-Bellman (HJB) equation satisfied by the value function, and then propose an upwind finite difference method to solve it. The stability of this method is demonstrated and the accuracy, as well as the usefulness, is shown by the numerical examples. The optimal management strategies, which maximize the discounted stream of the net revenue, together with the value functions, are obtained. The effects of the emission permits price and other parameters in the established model on the results have been also examined. We find that the influences of emission permits price on net revenue for the economic agents with different initial quotas are quite different. All the results demonstrate that the emission permits trading scheme plays an important role in the energy efficiency management.
In the aftermath of a major earthquake, delivery of essential services to survivors is of utmost importance and in urban areas it is conducted using road networks that are already stressed by road damages, other urban traffic and evacuation. Relief distribution efforts should be planned carefully in order to create minimal additional traffic congestion. We propose a dynamic relief distribution model where relief trucks share limited capacity road networks with counterflows resulting from car traffic. We develop a MIP model for this problem and solve it by decomposing the road network geographically and solving each subnetwork iteratively using the Relax and Fix method.
This paper establishes new convergence results for the power pena-lty method for a mixed complementarity problem(MiCP). The power penalty method approximates the MiCP by a nonlinear equation containing a power penalty term. The main merit of the method is that it has an exponential convergence rate with the penalty parameter when the involved function is continuous and ξ-monotone. Under the same assumptions, we establish a new upper bound for the approximation error of the solution to the nonlinear equation. We also prove that the penalty method can handle general monotone MiCPs. Then the method is used to solve a class of linearly constrained variational inequality(VI). Since the MiCP associated with a linearly constrained VI does not ξ-monotone even if the VI is ξ-monotone, we establish the new convergence result for this MiCP. We use the method to solve the asymmetric traffic assignment problem which can be reformulated as a class of linearly constrained VI. Numerical results are provided to demonstrate the efficiency of the method.
In this paper, we investigate the joint decision on production and pricing, and the compensation strategy of a supply chain, where the manufacturer relies on a risk-averse sales agent to sell the products. The sales outcome is determined by the sales agent's selling effort and the product price. Most of the previous research about salesforce assumes that the risk attitude to an agent is known to each other and the salvage value is a constant. In this study, we have considered that the salvage value is a function of inventory, and both of the sales agent's selling effort and risk attitude are their private information on the general framework of dual information asymmetric. With the help of revelation principle and principal-agent theory, we have been able to derive the optimal compensation contracts, and joint decision on production and pricing for the manufacturer. Analyzing them and comparing to the symmetric scenario, we found that only the optimal production strategy and the manufacturer's profit depended on the variation rate of salvage value. When the manufacturer comes across asymmetric risk-averse sales agents its profit decreases, whereas the sales agent with private information obtains higher income but exerts less effort, which implies the value of information. The results also mean that the manufacturer should not only focus on offering a lower commission rate to the more risk-averse sales agent, but also on screening his risk information.
In cloud computing, the most successful application framework is parallel-distributed processing, in which an enormous task is split into a number of subtasks and those are processed independently on a cluster of machines referred to as workers. Due to its huge system scale, worker failures occur frequently in cloud environment and failed subtasks cause a large processing delay of the task. One of schemes to alleviate the impact of failures is checkpointing method, with which the progress of a subtask is recorded as checkpoint and the failed subtask is resumed by other worker from the latest checkpoint. This method can reduce the processing delay of the task. However, frequent checkpointing is system overhead and hence the checkpoint interval must be set properly. In this paper, we consider the optimal number of checkpoints which minimizes the task-processing time. We construct a stochastic model of parallel-distributed processing with checkpointing and approximately derive explicit expressions for the mean task-processing time and the optimal number of checkpoints. Numerical experiments reveal that the proposed approximations are sufficiently accurate on typical environment of cloud computing. Furthermore, the derived optimal number of checkpoints outperforms the result of previous study for minimizing the task-processing time on parallel-distributed processing.
This paper investigates the optimal strategies for liability management and dividend payment in an insurance company. The surplus process is jointly determined by the reinsurance policies, liability levels, future claims and unanticipated shocks. The decision maker aims to maximize the total expected discounted utility of dividend payment in infinite time horizon. To describe the extreme scenarios when catastrophic events occur, a jump-diffusion Cox-Ingersoll-Ross process is adopted to capture the substantial claim rate hikes. Using dynamic programming principle, the value function is the solution of a second-order integro-differential Hamilton-Jacobi-Bellman equation. The subsolution--supersolution method is used to verify the existence of classical solutions of the Hamilton-Jacobi-Bellman equation. The optimal liability ratio and dividend payment strategies are obtained explicitly in the cases where the utility functions are logarithm and power functions. A numerical example is provided to illustrate the methodologies and some interesting economic insights.
Dissolved oxygen (DO) is one of the main parameters to assess the quality of lake water. This study is intended to construct a parabolic distributed parameter system to describe the variation of DO under the ice, and identify the vertical exchange coefficient K of DO with the field data. Based on the existence and uniqueness of the weak solution of this system, the fixed solution problem of the parabolic equation is transformed into a parameter identification model, which takes K as the identification parameter, and the deviation of the simulated and measured DO as the performance index. We prove the existence of the optimal parameter of the identification model, and derive the first order optimality conditions. Finally, we construct the optimization algorithm, and have carried out numerical simulation. According to the measured DO data in Lake Valkea-Kotinen (Finland), it can be found that the orders of magnitude of the coefficient K varying from 10-6 to 10-1 m2 s-1, the calculated and measured DO values are in good agreement. Within this range of K values, the overall trends are very similar. In order to get better fitting, the formula needs to be adjusted based on microbial and chemical consumption rates of DO.
This paper investigates the scheduling of family jobs with release dates on an unbounded parallel-batch machine. The involved objective functions are makespan and maximum flow time. It was reported in the literature that the single-criterion problem for minimizing makespan is strongly NP-hard when the number of families is arbitrary, and is polynomially solvable when the number of families is fixed. We first show in this paper that the single-criterion problem for minimizing maximum flow time is also strongly NP-hard when the number of families is arbitrary. We further show that the Pareto optimization problem (also called bicriteria problem) for minimizing makespan and maximum flow time is polynomially solvable when the number of families is fixed, by enumerating all Pareto optimal points in polynomial time. This implies that the single-criterion problem for minimizing maximum flow time is also polynomially solvable when the number of families is fixed.
The objective of this work is to present novel correlation coefficients under the intuitionistic multiplicative preference relation (IMPR), for measuring the relationship between the two intuitionistic multiplicative sets, instead of intuitionistic fuzzy preference relation (IFPR). As IFPR deals under the conditions that the attribute values grades are symmetrical and uniformly distributed. But in our day-to-day life, these conditions do not fulfill the decision maker requirement and hence IFPR theory is not applicable in that domain. Thus, for handling this, an intuitionistic multiplicative set theory has been utilized where grades are distributed asymmetrical around 1. Further, under this environment, a decision making method based on the proposed novel correlation coefficients has been presented. Pairs of membership and non-membership degree are considered to be a vector representation during formulation. Three numerical examples have been taken to demonstrate the efficiency of the proposed approach.
This paper considers the joint inventory and pricing decision problem that a loss averse firm with reference point selling seasonal products to strategic consumers with risk preference and decreasing value. Consumers can decide whether to buy at the full price in stage 1, or to wait till stage 2 for the salvage price. They may not get the product if the product is sold out in stage 2. The firm aims to choose a base stock policy and find an optimal price to maximize its expected utility, while consumers aim to decide whether to buy or wait strategically for optimizing their payoffs. We formulate the problem as a Stackelberg game between the firm and the strategic consumers in which the firm is the leader. By deriving the rational expectation equilibrium, we find both the optimal stocking level and the full price in our model are lower than those in the classical model without strategic consumers, by which leads to a lower profit. Furthermore, it is shown that the reimbursement contract cannot alleviate the impact of strategic behavior of customers while the firm's profit can be improved by the price commitment strategy in most cases. Numerical studies are carried out to investigate the impact of strategic customer behavior and system parameters on the firm's optimal decisions.
Premium rate for an insurance policy is often reviewed and updated periodically according to past claim experience in real-life. In this paper, a dynamic premium strategy that depends on the past claim experience is proposed under the discrete-time risk model. The Gerber-Shiu function is analyzed under this model. The marketing implications of the dynamic premium strategy will also be discussed.
Affected by the fluctuation of wind and load, large frequency change will occur in independently islanded wind-diesel complementary microgrid. In order to suppress disturbance and ensure the normal operation of microgrid, a $H_{2}/H_{∞}$ controller optimized by improved particle swarm algorithm is designed to control the frequency of microgrid. $H_{2}/H_{∞}$ hybrid control can well balance the robustness and the performance of system. Particle swarm algorithm is improved. Adaptive method is used to adjust the inertia weight, and cloud fuzzy deduction is used to determine the learning factor. Improved particle swarm algorithm can solve the problem of local extremum, so the global optimal goal can be achieved. It is used to optimize $H_{2}/H_{∞}$ controller, so as to overcome the conservative property of solution by linear matrix inequality and improve the adaptive ability of controller. Simulation results show that with a $H_{2}/H_{∞}$ controller optimized by improved particle swarm algorithm, the frequency fluctuations caused by the wind and load is decreased, and the safety and stable operation of microgrid is guaranteed.
In this paper, an adjoint-based optimization method is employed to estimate the unknown coefficients and states arising in an one-dimensional (1-D) magnetohydrodynamic (MHD) flow, whose dynamics can be modeled by a coupled partial differential equations (PDEs) under some suitable assumptions. In this model, the coefficients of the Reynolds number and initial conditions as well as state variables are supposed to be unknown and need to be estimated. We first employ the Lagrange multiplier method to connect the dynamics of the 1-D MHD system and the cost functional defined as the least square errors between the measurements in the experiment and the numerical simulation values. Then, we use the adjoint-based method to the augmented Lagrangian cost functional to get an adjoint coupled PDEs system, and the exact gradients of the defined cost functional with respect to these unknown parameters and initial states are further derived. The existed gradient-based optimization technique such as sequential quadratic programming (SQP) is employed for minimizing the cost functional in the optimization process. Finally, we illustrate the numerical examples to verify the effectiveness of our adjoint-based estimation approach.
In this work, we propose a new version of inertial relaxed CQ algorithms for solving the split feasibility problems in the frameworks of Hilbert spaces. We then prove its strong convergence by using a viscosity approximation method under some weakened assumptions. To be more precisely, the computation on the norm of operators and the metric projections is relaxed. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.
In practice, the mutual fund manager charges asset based management fee as the incentives. Meanwhile, we suppose that the investor could sustainedly obtain the fixed proportions of the fund values as the rewards. In this perspective, the objectives of the investor and the manager seem to be consistent. Unfortunately, it is a common situation that the fund managers have private relations, and they transfer the assets illegally. In this paper, we study the optimal tunneling behaviors of the two fund managers to maximize the overall performance criterions. It is the first time to use two prototypes whether the management fee rates are consistent with the investment returns to study the impacts of the two factors on the tunneling behaviors. We firstly study the problem without transaction cost between funds, and it is formalized as a two-dimensional stochastic optimal control problem, whose semi-analytical solution is derived by the dynamic programming methods. Furthermore, the transaction cost is considered, and we explore the penalty method and the finite difference method to establish the numerical solutions. The results show that the well performed and high rewarded fund manager obtains most of the total assets by tunneling, and only keep the other fund at the brink of maximal withdraws for the liquidity considerations. Moreover, the well performed and low rewarded fund manager obtains most of the total assets. Being inconsistent with the instinct, the high management fee rate could neither make the fund managers work efficiently, nor induce the beneficial tunneling behaviors.
In this paper, we firstly examine the relation between the portfolio weights norm constraints method and the objective function regularization method in portfolio selection problems. We find that the portfolio weights norm constrained method mainly tries to obtain stable portfolios, however, the objective function regularization method mainly aims at obtaining sparse portfolios. Then, we propose some general sparse and stable portfolio models by imposing both portfolio weights norm constraints and objective function $L_{1}$ regularization term. Finally, three empirical studies show that the proposed strategies have better out-of-sample performance and lower turnover than many other strategies for tested datasets.
With ever-increasing demand for bandwidth, both optical packet switching and optical burst switching are proposed as alternatives to increase the capacity of optical networks in the future. In these packet-based switching techniques, Fiber Delay Lines (for delay assignments) and wavelength conversion (for channel assignments) are used to avoid contention between contending packets. The involved scheduling algorithms decide on which Fiber Delay Line and wavelength each packet is scheduled in order to maximize performance. For the setting without wavelength conversion we proposed a scheduling algorithm for assigning delays called void-creating algorithm that outperforms existing void filling algorithms for a variety of packet size distributions. This is achieved by selectively delaying packets longer than strictly necessary based on a numerical procedure that assigns a theoretical value to each void based on how likely the void will eventually be filled and thus prove useful. This contribution extends the concept of void-creation to the important case with multiple wavelengths, where also the channel has to be assigned. Results obtained by Monte Carlo simulation show that with our void-creating algorithm the obtainable improvement in various performance measures highly depends on the number of wavelengths present.
In this paper, we analyze an optimal impulse control problem of a stochastic inventory system whose state follows a mean-reverting Ornstein-Uhlenbeck process. The objective of the management is to keep the inventory level as close as possible to a given target. When the management intervenes in the system, it requires costs consisting of a quadratic form of the system state. Besides, there are running costs associated with the difference between the inventory level and the target. Those costs are also of a quadratic form. The objective of this paper is to find an optimal control of minimizing the expected total discounted sum of the intervention costs and running costs incurred over the infinite time horizon. We solve the problem by using stochastic impulse control theory.
We consider an M/M/
2020
Impact Factor: 1.801
5 Year Impact Factor: 1.688
2020 CiteScore: 1.8
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]