All Issues

Volume 18, 2022

Volume 17, 2021

Volume 16, 2020

Volume 15, 2019

Volume 14, 2018

Volume 13, 2017

Volume 12, 2016

Volume 11, 2015

Volume 10, 2014

Volume 9, 2013

Volume 8, 2012

Volume 7, 2011

Volume 6, 2010

Volume 5, 2009

Volume 4, 2008

Volume 3, 2007

Volume 2, 2006

Volume 1, 2005

Journal of Industrial and Management Optimization

October 2018 , Volume 14 , Issue 4

Select all articles


Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations
Sheng Zhu and Jinting Wang
2018, 14(4): 1297-1322 doi: 10.3934/jimo.2018008 +[Abstract](6145) +[HTML](1378) +[PDF](601.98KB)

This paper considers an unobservable M/G/1 queue with Bernoulli vacations in which the server begins a vacation when the system is empty or upon completing a service. In the latter case, the server takes a vacation with p or serves the next customer, if any, with 1-p. We first give the steady-state equations and some performance measures, and then study the customer strategic behavior and obtain customers' Nash equilibrium strategies. From the viewpoint of the social planner, we derive the socially optimal joining probability, the socially optimal vacation probability and the socially optimal vacation rate. The socially optimal joining probability is found not greater than the equilibrium probability. In addition, if the vacation scheme does not incur any cost, the socially optimal decision is that the server does not take either a Bernoulli vacation or the normal vacation. On the other hand, if the server incurs the costs due to the underlying loss and the technology upgrade, proper vacations are beneficial to the social welfare maximization. Finally, sensitivity analysis is also performed to explore the effect of different parameters, and some managerial insights are provided for the social planner.

Optimal investment and dividend payment strategies with debt management and reinsurance
Qian Zhao, Zhuo Jin and Jiaqin Wei
2018, 14(4): 1323-1348 doi: 10.3934/jimo.2018009 +[Abstract](6216) +[HTML](1219) +[PDF](432.09KB)

This paper derives the optimal debt ratio, investment and dividend payment strategies for an insurance company. The surplus process is jointly determined by the reinsurance strategies, debt levels, investment portfolios and unanticipated shocks. The objective is to maximize the total expected discounted utility of dividend payments in finite-time period subject to three control variables. The utility functions are chosen as the logarithmic and power utility functions. Using dynamic programming principle, the value function is the solution of a second-order nonlinear Hamilton-Jacobi-Bellman equation. The explicit solution of the value function is derived and the corresponding optimal debt ratio, investment and dividend payment strategies are obtained. In addition, the investment borrowing constraint, dividend payment constraint and impacts of reinsurance policies are considered and their impacts on the optimal strategies are analyzed. Further, to incorporating the interest rate risk, the problem is studied under a stochastic interest rate model.

Modeling and computation of energy efficiency management with emission permits trading
Shuhua Zhang, Xinyu Wang and Song Wang
2018, 14(4): 1349-1365 doi: 10.3934/jimo.2018010 +[Abstract](5504) +[HTML](1138) +[PDF](974.78KB)

In this paper, we present an optimal feedback control model to deal with the problem of energy efficiency management. Especially, an emission permits trading scheme is considered in our model, in which the decision maker can trade the emission permits flexibly. We make use of the optimal control theory to derive a Hamilton-Jacobi-Bellman (HJB) equation satisfied by the value function, and then propose an upwind finite difference method to solve it. The stability of this method is demonstrated and the accuracy, as well as the usefulness, is shown by the numerical examples. The optimal management strategies, which maximize the discounted stream of the net revenue, together with the value functions, are obtained. The effects of the emission permits price and other parameters in the established model on the results have been also examined. We find that the influences of emission permits price on net revenue for the economic agents with different initial quotas are quite different. All the results demonstrate that the emission permits trading scheme plays an important role in the energy efficiency management.

Disaster relief routing in limited capacity road networks with heterogeneous flows
Linet Ozdamar, Dilek Tuzun Aksu, Elifcan Yasa and Biket Ergunes
2018, 14(4): 1367-1380 doi: 10.3934/jimo.2018011 +[Abstract](5999) +[HTML](1735) +[PDF](724.32KB)

In the aftermath of a major earthquake, delivery of essential services to survivors is of utmost importance and in urban areas it is conducted using road networks that are already stressed by road damages, other urban traffic and evacuation. Relief distribution efforts should be planned carefully in order to create minimal additional traffic congestion. We propose a dynamic relief distribution model where relief trucks share limited capacity road networks with counterflows resulting from car traffic. We develop a MIP model for this problem and solve it by decomposing the road network geographically and solving each subnetwork iteratively using the Relax and Fix method.

A power penalty method for a class of linearly constrained variational inequality
Ming Chen and Chongchao Huang
2018, 14(4): 1381-1396 doi: 10.3934/jimo.2018012 +[Abstract](5594) +[HTML](1177) +[PDF](465.45KB)

This paper establishes new convergence results for the power pena-lty method for a mixed complementarity problem(MiCP). The power penalty method approximates the MiCP by a nonlinear equation containing a power penalty term. The main merit of the method is that it has an exponential convergence rate with the penalty parameter when the involved function is continuous and ξ-monotone. Under the same assumptions, we establish a new upper bound for the approximation error of the solution to the nonlinear equation. We also prove that the penalty method can handle general monotone MiCPs. Then the method is used to solve a class of linearly constrained variational inequality(VI). Since the MiCP associated with a linearly constrained VI does not ξ-monotone even if the VI is ξ-monotone, we establish the new convergence result for this MiCP. We use the method to solve the asymmetric traffic assignment problem which can be reformulated as a class of linearly constrained VI. Numerical results are provided to demonstrate the efficiency of the method.

Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent
Kegui Chen, Xinyu Wang, Min Huang and Wai-Ki Ching
2018, 14(4): 1397-1422 doi: 10.3934/jimo.2018013 +[Abstract](6161) +[HTML](1119) +[PDF](587.45KB)

In this paper, we investigate the joint decision on production and pricing, and the compensation strategy of a supply chain, where the manufacturer relies on a risk-averse sales agent to sell the products. The sales outcome is determined by the sales agent's selling effort and the product price. Most of the previous research about salesforce assumes that the risk attitude to an agent is known to each other and the salvage value is a constant. In this study, we have considered that the salvage value is a function of inventory, and both of the sales agent's selling effort and risk attitude are their private information on the general framework of dual information asymmetric. With the help of revelation principle and principal-agent theory, we have been able to derive the optimal compensation contracts, and joint decision on production and pricing for the manufacturer. Analyzing them and comparing to the symmetric scenario, we found that only the optimal production strategy and the manufacturer's profit depended on the variation rate of salvage value. When the manufacturer comes across asymmetric risk-averse sales agents its profit decreases, whereas the sales agent with private information obtains higher income but exerts less effort, which implies the value of information. The results also mean that the manufacturer should not only focus on offering a lower commission rate to the more risk-averse sales agent, but also on screening his risk information.

Performance optimization of parallel-distributed processing with checkpointing for cloud environment
Tsuguhito Hirai, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi
2018, 14(4): 1423-1442 doi: 10.3934/jimo.2018014 +[Abstract](5804) +[HTML](1185) +[PDF](446.55KB)

In cloud computing, the most successful application framework is parallel-distributed processing, in which an enormous task is split into a number of subtasks and those are processed independently on a cluster of machines referred to as workers. Due to its huge system scale, worker failures occur frequently in cloud environment and failed subtasks cause a large processing delay of the task. One of schemes to alleviate the impact of failures is checkpointing method, with which the progress of a subtask is recorded as checkpoint and the failed subtask is resumed by other worker from the latest checkpoint. This method can reduce the processing delay of the task. However, frequent checkpointing is system overhead and hence the checkpoint interval must be set properly. In this paper, we consider the optimal number of checkpoints which minimizes the task-processing time. We construct a stochastic model of parallel-distributed processing with checkpointing and approximately derive explicit expressions for the mean task-processing time and the optimal number of checkpoints. Numerical experiments reveal that the proposed approximations are sufficiently accurate on typical environment of cloud computing. Furthermore, the derived optimal number of checkpoints outperforms the result of previous study for minimizing the task-processing time on parallel-distributed processing.

Optimal liability ratio and dividend payment strategies under catastrophic risk
Linyi Qian, Lyu Chen, Zhuo Jin and Rongming Wang
2018, 14(4): 1443-1461 doi: 10.3934/jimo.2018015 +[Abstract](5663) +[HTML](1338) +[PDF](482.08KB)

This paper investigates the optimal strategies for liability management and dividend payment in an insurance company. The surplus process is jointly determined by the reinsurance policies, liability levels, future claims and unanticipated shocks. The decision maker aims to maximize the total expected discounted utility of dividend payment in infinite time horizon. To describe the extreme scenarios when catastrophic events occur, a jump-diffusion Cox-Ingersoll-Ross process is adopted to capture the substantial claim rate hikes. Using dynamic programming principle, the value function is the solution of a second-order integro-differential Hamilton-Jacobi-Bellman equation. The subsolution--supersolution method is used to verify the existence of classical solutions of the Hamilton-Jacobi-Bellman equation. The optimal liability ratio and dividend payment strategies are obtained explicitly in the cases where the utility functions are logarithm and power functions. A numerical example is provided to illustrate the methodologies and some interesting economic insights.

Parameter identification and numerical simulation for the exchange coefficient of dissolved oxygen concentration under ice in a boreal lake
Qinxi Bai, Zhijun Li, Lei Wang, Bing Tan and Enmin Feng
2018, 14(4): 1463-1478 doi: 10.3934/jimo.2018016 +[Abstract](5229) +[HTML](1192) +[PDF](2804.39KB)

Dissolved oxygen (DO) is one of the main parameters to assess the quality of lake water. This study is intended to construct a parabolic distributed parameter system to describe the variation of DO under the ice, and identify the vertical exchange coefficient K of DO with the field data. Based on the existence and uniqueness of the weak solution of this system, the fixed solution problem of the parabolic equation is transformed into a parameter identification model, which takes K as the identification parameter, and the deviation of the simulated and measured DO as the performance index. We prove the existence of the optimal parameter of the identification model, and derive the first order optimality conditions. Finally, we construct the optimization algorithm, and have carried out numerical simulation. According to the measured DO data in Lake Valkea-Kotinen (Finland), it can be found that the orders of magnitude of the coefficient K varying from 10-6 to 10-1 m2 s-1, the calculated and measured DO values are in good agreement. Within this range of K values, the overall trends are very similar. In order to get better fitting, the formula needs to be adjusted based on microbial and chemical consumption rates of DO.

Scheduling family jobs on an unbounded parallel-batch machine to minimize makespan and maximum flow time
Zhichao Geng and Jinjiang Yuan
2018, 14(4): 1479-1500 doi: 10.3934/jimo.2018017 +[Abstract](5781) +[HTML](1451) +[PDF](341.71KB)

This paper investigates the scheduling of family jobs with release dates on an unbounded parallel-batch machine. The involved objective functions are makespan and maximum flow time. It was reported in the literature that the single-criterion problem for minimizing makespan is strongly NP-hard when the number of families is arbitrary, and is polynomially solvable when the number of families is fixed. We first show in this paper that the single-criterion problem for minimizing maximum flow time is also strongly NP-hard when the number of families is arbitrary. We further show that the Pareto optimization problem (also called bicriteria problem) for minimizing makespan and maximum flow time is polynomially solvable when the number of families is fixed, by enumerating all Pareto optimal points in polynomial time. This implies that the single-criterion problem for minimizing maximum flow time is also polynomially solvable when the number of families is fixed.

Novel correlation coefficients under the intuitionistic multiplicative environment and their applications to decision-making process
Harish Garg
2018, 14(4): 1501-1519 doi: 10.3934/jimo.2018018 +[Abstract](6576) +[HTML](1517) +[PDF](448.4KB)

The objective of this work is to present novel correlation coefficients under the intuitionistic multiplicative preference relation (IMPR), for measuring the relationship between the two intuitionistic multiplicative sets, instead of intuitionistic fuzzy preference relation (IFPR). As IFPR deals under the conditions that the attribute values grades are symmetrical and uniformly distributed. But in our day-to-day life, these conditions do not fulfill the decision maker requirement and hence IFPR theory is not applicable in that domain. Thus, for handling this, an intuitionistic multiplicative set theory has been utilized where grades are distributed asymmetrical around 1. Further, under this environment, a decision making method based on the proposed novel correlation coefficients has been presented. Pairs of membership and non-membership degree are considered to be a vector representation during formulation. Three numerical examples have been taken to demonstrate the efficiency of the proposed approach.

Optimal pricing and inventory management for a loss averse firm when facing strategic customers
Ruopeng Wang, Jinting Wang and Chang Sun
2018, 14(4): 1521-1544 doi: 10.3934/jimo.2018019 +[Abstract](6557) +[HTML](1299) +[PDF](517.27KB)

This paper considers the joint inventory and pricing decision problem that a loss averse firm with reference point selling seasonal products to strategic consumers with risk preference and decreasing value. Consumers can decide whether to buy at the full price in stage 1, or to wait till stage 2 for the salvage price. They may not get the product if the product is sold out in stage 2. The firm aims to choose a base stock policy and find an optimal price to maximize its expected utility, while consumers aim to decide whether to buy or wait strategically for optimizing their payoffs. We formulate the problem as a Stackelberg game between the firm and the strategic consumers in which the firm is the leader. By deriving the rational expectation equilibrium, we find both the optimal stocking level and the full price in our model are lower than those in the classical model without strategic consumers, by which leads to a lower profit. Furthermore, it is shown that the reimbursement contract cannot alleviate the impact of strategic behavior of customers while the firm's profit can be improved by the price commitment strategy in most cases. Numerical studies are carried out to investigate the impact of strategic customer behavior and system parameters on the firm's optimal decisions.

Analysis of a dynamic premium strategy: From theoretical and marketing perspectives
Wing Yan Lee and Fangda Liu
2018, 14(4): 1545-1564 doi: 10.3934/jimo.2018020 +[Abstract](5049) +[HTML](1060) +[PDF](411.86KB)

Premium rate for an insurance policy is often reviewed and updated periodically according to past claim experience in real-life. In this paper, a dynamic premium strategy that depends on the past claim experience is proposed under the discrete-time risk model. The Gerber-Shiu function is analyzed under this model. The marketing implications of the dynamic premium strategy will also be discussed.

Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm
Zhong-Qiang Wu and Xi-Bo Zhao
2018, 14(4): 1565-1577 doi: 10.3934/jimo.2018021 +[Abstract](5196) +[HTML](1035) +[PDF](1130.33KB)

Affected by the fluctuation of wind and load, large frequency change will occur in independently islanded wind-diesel complementary microgrid. In order to suppress disturbance and ensure the normal operation of microgrid, a $H_{2}/H_{∞}$ controller optimized by improved particle swarm algorithm is designed to control the frequency of microgrid. $H_{2}/H_{∞}$ hybrid control can well balance the robustness and the performance of system. Particle swarm algorithm is improved. Adaptive method is used to adjust the inertia weight, and cloud fuzzy deduction is used to determine the learning factor. Improved particle swarm algorithm can solve the problem of local extremum, so the global optimal goal can be achieved. It is used to optimize $H_{2}/H_{∞}$ controller, so as to overcome the conservative property of solution by linear matrix inequality and improve the adaptive ability of controller. Simulation results show that with a $H_{2}/H_{∞}$ controller optimized by improved particle swarm algorithm, the frequency fluctuations caused by the wind and load is decreased, and the safety and stable operation of microgrid is guaranteed.

Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system
Zhigang Ren, Shan Guo, Zhipeng Li and Zongze Wu
2018, 14(4): 1579-1594 doi: 10.3934/jimo.2018022 +[Abstract](5392) +[HTML](994) +[PDF](1016.95KB)

In this paper, an adjoint-based optimization method is employed to estimate the unknown coefficients and states arising in an one-dimensional (1-D) magnetohydrodynamic (MHD) flow, whose dynamics can be modeled by a coupled partial differential equations (PDEs) under some suitable assumptions. In this model, the coefficients of the Reynolds number and initial conditions as well as state variables are supposed to be unknown and need to be estimated. We first employ the Lagrange multiplier method to connect the dynamics of the 1-D MHD system and the cost functional defined as the least square errors between the measurements in the experiment and the numerical simulation values. Then, we use the adjoint-based method to the augmented Lagrangian cost functional to get an adjoint coupled PDEs system, and the exact gradients of the defined cost functional with respect to these unknown parameters and initial states are further derived. The existed gradient-based optimization technique such as sequential quadratic programming (SQP) is employed for minimizing the cost functional in the optimization process. Finally, we illustrate the numerical examples to verify the effectiveness of our adjoint-based estimation approach.

The modified inertial relaxed CQ algorithm for solving the split feasibility problems
Suthep Suantai, Nattawut Pholasa and Prasit Cholamjiak
2018, 14(4): 1595-1615 doi: 10.3934/jimo.2018023 +[Abstract](7359) +[HTML](1763) +[PDF](473.12KB)

In this work, we propose a new version of inertial relaxed CQ algorithms for solving the split feasibility problems in the frameworks of Hilbert spaces. We then prove its strong convergence by using a viscosity approximation method under some weakened assumptions. To be more precisely, the computation on the norm of operators and the metric projections is relaxed. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.

Tunneling behaviors of two mutual funds
Lin He, Zongxia Liang and Xiaoyang Zhao
2018, 14(4): 1617-1649 doi: 10.3934/jimo.2018024 +[Abstract](4714) +[HTML](964) +[PDF](1307.45KB)

In practice, the mutual fund manager charges asset based management fee as the incentives. Meanwhile, we suppose that the investor could sustainedly obtain the fixed proportions of the fund values as the rewards. In this perspective, the objectives of the investor and the manager seem to be consistent. Unfortunately, it is a common situation that the fund managers have private relations, and they transfer the assets illegally. In this paper, we study the optimal tunneling behaviors of the two fund managers to maximize the overall performance criterions. It is the first time to use two prototypes whether the management fee rates are consistent with the investment returns to study the impacts of the two factors on the tunneling behaviors. We firstly study the problem without transaction cost between funds, and it is formalized as a two-dimensional stochastic optimal control problem, whose semi-analytical solution is derived by the dynamic programming methods. Furthermore, the transaction cost is considered, and we explore the penalty method and the finite difference method to establish the numerical solutions. The results show that the well performed and high rewarded fund manager obtains most of the total assets by tunneling, and only keep the other fund at the brink of maximal withdraws for the liquidity considerations. Moreover, the well performed and low rewarded fund manager obtains most of the total assets. Being inconsistent with the instinct, the high management fee rate could neither make the fund managers work efficiently, nor induce the beneficial tunneling behaviors.

A generalized approach to sparse and stable portfolio optimization problem
Zhifeng Dai and Fenghua Wen
2018, 14(4): 1651-1666 doi: 10.3934/jimo.2018025 +[Abstract](6962) +[HTML](2186) +[PDF](389.87KB)

In this paper, we firstly examine the relation between the portfolio weights norm constraints method and the objective function regularization method in portfolio selection problems. We find that the portfolio weights norm constrained method mainly tries to obtain stable portfolios, however, the objective function regularization method mainly aims at obtaining sparse portfolios. Then, we propose some general sparse and stable portfolio models by imposing both portfolio weights norm constraints and objective function $L_{1}$ regularization term. Finally, three empirical studies show that the proposed strategies have better out-of-sample performance and lower turnover than many other strategies for tested datasets.

Selective void creation/filling for variable size packets and multiple wavelengths
Kurt Van Hautegem, Wouter Rogiest and Herwig Bruneel
2018, 14(4): 1667-1684 doi: 10.3934/jimo.2018026 +[Abstract](4808) +[HTML](1116) +[PDF](4019.83KB)

With ever-increasing demand for bandwidth, both optical packet switching and optical burst switching are proposed as alternatives to increase the capacity of optical networks in the future. In these packet-based switching techniques, Fiber Delay Lines (for delay assignments) and wavelength conversion (for channel assignments) are used to avoid contention between contending packets. The involved scheduling algorithms decide on which Fiber Delay Line and wavelength each packet is scheduled in order to maximize performance. For the setting without wavelength conversion we proposed a scheduling algorithm for assigning delays called void-creating algorithm that outperforms existing void filling algorithms for a variety of packet size distributions. This is achieved by selectively delaying packets longer than strictly necessary based on a numerical procedure that assigns a theoretical value to each void based on how likely the void will eventually be filled and thus prove useful. This contribution extends the concept of void-creation to the important case with multiple wavelengths, where also the channel has to be assigned. Results obtained by Monte Carlo simulation show that with our void-creating algorithm the obtainable improvement in various performance measures highly depends on the number of wavelengths present.

Optimal impulse control of a mean-reverting inventory with quadratic costs
Yanqing Hu, Zaiming Liu and Jinbiao Wu
2018, 14(4): 1685-1700 doi: 10.3934/jimo.2018027 +[Abstract](5656) +[HTML](1214) +[PDF](464.83KB)

In this paper, we analyze an optimal impulse control problem of a stochastic inventory system whose state follows a mean-reverting Ornstein-Uhlenbeck process. The objective of the management is to keep the inventory level as close as possible to a given target. When the management intervenes in the system, it requires costs consisting of a quadratic form of the system state. Besides, there are running costs associated with the difference between the inventory level and the target. Those costs are also of a quadratic form. The objective of this paper is to find an optimal control of minimizing the expected total discounted sum of the intervention costs and running costs incurred over the infinite time horizon. We solve the problem by using stochastic impulse control theory.

Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers
Hideaki Takagi
2018, 14(4): 1701-1726 doi: 10.3934/jimo.2018028 +[Abstract](4986) +[HTML](1139) +[PDF](606.04KB)

We consider an M/M/\begin{document}$ m$\end{document} preemptive-resume last-come first-served (PR-LCFS) queue without exogenous priority classes of impatient customers. We focus on analyzing the time interval from the arrival to either service completion or abandonment for an arbitrary customer. We formulate the problem as a one-dimensional birth-and-death process with two absorbing states, and consider the first passage times in this process. We give explicit expressions for the probabilities of service completion and abandonment. Furthermore, we present sets of recursive computational formulas for calculating the mean and second moment of the times until service completion and abandonment. The two special cases of a preemptive-loss system and an ordinary M/M/\begin{document}$ m$\end{document} queue with patient customers only, both incorporating the preemptive LCFS discipline, are treated separately. We show some numerical examples in order to demonstrate the computation of theoretical formulas.

2021 Impact Factor: 1.411
5 Year Impact Factor: 1.441
2021 CiteScore: 2.1




Email Alert

[Back to Top]