
ISSN:
1556-1801
eISSN:
1556-181X
All Issues
Networks and Heterogeneous Media
February 2022 , Volume 17 , Issue 1
Select all articles
Export/Reference:
In [Andreianov, Coclite, Donadello, Discrete Contin. Dyn. Syst. A, 2017], a finite volume scheme was introduced for computing vanishing viscosity solutions on a single-junction network, and convergence to the vanishing viscosity solution was proven. This problem models
We investigate the homogenization through
We study the asymptotic behavior of a three-dimensional elastic material reinforced with highly contrasted thin vertical strips constructed on horizontal iterated Sierpinski gasket curves. We use
Hyperbolic systems on networks often can be written as systems of first order equations on an interval, coupled by transmission conditions at the endpoints, also called port-Hamiltonians. However, general results for the latter have been difficult to interpret in the network language. The aim of this paper is to derive conditions under which a port-Hamiltonian with general linear Kirchhoff's boundary conditions can be written as a system of
We consider nonlinear scalar conservation laws posed on a network. We define an entropy condition for scalar conservation laws on networks and establish $L^1$ stability, and thus uniqueness, for weak solutions satisfying the entropy condition. We apply standard finite volume methods and show stability and convergence to the unique entropy solution, thus establishing existence of a solution in the process. Both our existence and stability/uniqueness theory is centred around families of stationary states for the equation. In one important case – for monotone fluxes with an upwind difference scheme – we show that the set of (discrete) stationary solutions is indeed sufficiently large to suit our general theory. We demonstrate the method's properties through several numerical experiments.
2020
Impact Factor: 1.213
5 Year Impact Factor: 1.384
2020 CiteScore: 1.9
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]