
ISSN:
1930-5346
eISSN:
1930-5338
All Issues
Advances in Mathematics of Communications
November 2020 , Volume 14 , Issue 4
Select all articles
Export/Reference:
We propose the first lattice-based dynamic group signature scheme achieving forward security. Our scheme is proven to be secure against framing attack, misidentification attack and preserves anonymity under the learning with errors (${\mathsf{LWE}}$) and short integer solution (${\mathsf{SIS}}$) assumptions in the random oracle model. More interestingly, our setting allows the group manager to generate distinct certificates to distinct users which can be updated by the users themselves without any interaction with the group manager. Furthermore, our scheme is dynamic where signing key of a user is not fixed during the setup and is issued only at the joining time of the user.
In this paper, we attack the recent NIST submission Giophantus, a public key encryption scheme. We find that the complicated structure of Giophantus's ciphertexts leaks information via a correspondence from a low dimensional lattice. This allows us to distinguish encrypted data from random data by the LLL algorithm. This is a more efficient attack than previous proposed attacks.
Low hit zone frequency hopping sequences (LHZ FHSs) with favorable partial Hamming correlation properties are desirable in quasi-synchronous frequency hopping multiple-access systems. An LHZ FHS set is considered to be strictly optimal when it has optimal partial Hamming correlation for all correlation windows. In this study, an interleaved construction of new sets of strictly optimal LHZ FHSs is proposed. Strictly optimal LHZ FHS sets with new and flexible parameters are obtained by selecting suitable known optimal FHSs and appropriate shift sequences.
In this paper we introduce the notion of orbit matrices of integer matrices such as Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields
In this paper, using a method of construction of
We show that
In this paper we characterize the orbit codes as geometrically uniform codes. This characterization is based on the description of all isometries over a projective geometry. In addition, Abelian orbit codes are defined and a construction of Abelian non-cyclic orbit codes is presented. In order to analyze their structures, the concept of geometrically uniform partitions have to be reinterpreted. As a consequence, a substantial reduction in the number of computations needed to obtain the minimum subspace distance of these codes is achieved and established.
An application of orbit codes to multishot subspace codes obtained according to a multi-level construction is provided.
The
The norm concerns only the affine spaces contained in either the support or the co-support; the information it provides on
The value of
We study the properties of these three parameters. We have
We consider the minimal value of
We describe eight composite constructions from group rings where the orders of the groups are 4 and 8, which are then applied to find self-dual codes of length 16 over
This paper presents a series of Montgomery scalar multiplication algorithms on general short Weierstrass curves over fields with characteristic greater than 3, which need only 12 field multiplications per scalar bit using 8
The study of the trapdoors that can be hidden in a block cipher is and has always been a high-interest topic in symmetric cryptography. In this paper we focus on Feistel-network-like ciphers in a classical long-key scenario and we investigate some conditions which make such a construction immune to the partition-based attack introduced recently by Bannier et al.
2020
Impact Factor: 0.935
5 Year Impact Factor: 0.976
2020 CiteScore: 1.5
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]