
ISSN:
1930-5346
eISSN:
1930-5338
All Issues
Advances in Mathematics of Communications
February 2022 , Volume 16 , Issue 1
Select all articles
Export/Reference:
Conjucyclic codes were first introduced by Calderbank, Rains, Shor and Sloane in [
For any odd prime
Attrapadung (Eurocrypt 2014) proposed a generic framework for fully (adaptively) CPA-secure predicate encryption (PE) based on a new primitive, called pair encodings. Following the CCA conversions of Yamada et al. (PKC 2011, 2012) and Nandi et al. (ePrint Archive: 2015/457, AAECC 2018), one can have CCA-secure PE from CPA-secure PE if the primitive PE has either verifiability or delegation. These traditional approaches degrade the performance of the resultant CCA-secure PE scheme as compared to the primitive CPA-secure PE. As an alternative, we provide a direct fully secure CCA-construction of PE from the pair encoding scheme. This costs an extra computation of group element in encryption, three extra pairing computations and one re-randomization of key in decryption as compared to the CPA-construction of Attrapadung.
Recently, Blömer et al. (CT-RSA 2016) proposed a direct CCA-secure construction of predicate encryptions from pair encodings. Although they did not use the aforementioned traditional approaches, a sort of verifiability checking is still involved in the CCA-decryption. The number of pairing computations for this checking is nearly equal to the number of paring computations in CPA-decryption. Therefore, the performance of our direct CCA-secure PE is far better than Blömer et al.
Locally Repairable Codes (LRC's) based on generalised quadrangles were introduced by Pamies-Juarez, Hollmann and Oggier in [
For a prime
Studying the linear complexity of
We consider the Improved Generalized Feistel Structure (IGFS) suggested by Suzaki and Minematsu (LNCS, 2010). It is a generalization of the classical Feistel cipher. The message is divided into
Suzaki and Minematsu (LNCS, 2010) study the case when one and the same permutation is applied at each round, while we consider IGFS with possibly different permutations at the different rounds. In this case we present permutation sequences yielding IGFS with the best known by now diffusion for all even
In this paper, we give a geometric characterization of minimal linear codes. In particular, we relate minimal linear codes to cutting blocking sets, introduced in a recent paper by Bonini and Borello. Using this characterization, we derive some bounds on the length and the distance of minimal codes, according to their dimension and the underlying field size. Furthermore, we show that the family of minimal codes is asymptotically good. Finally, we provide some geometrical constructions of minimal codes as cutting blocking sets.
In this paper we construct different families of orbit codes in the vector spaces of the symmetric bilinear forms, quadratic forms and Hermitian forms on an
Combinatorial
We present AI-systems for the binary codes obtained from the adjacency relation of the triangular graphs
This work introduces ${\sf {FAST}}$ which is a new family of tweakable enciphering schemes. Several instantiations of ${\sf {FAST}}$ are described. These are targeted towards two goals, the specific task of disk encryption and a more general scheme suitable for a wide variety of practical applications. A major contribution of this work is to present detailed and careful software implementations of all of these instantiations. For disk encryption, the results from the implementations show that ${\sf {FAST}}$ compares very favourably to the IEEE disk encryption standards XCB and EME2 as well as the more recent proposal AEZ. ${\sf {FAST}}$ is built using a fixed input length pseudo-random function and an appropriate hash function. It uses a single-block key, is parallelisable and can be instantiated using only the encryption function of a block cipher. The hash function can be instantiated using either the Horner's rule based usual polynomial hashing or hashing based on the more efficient Bernstein-Rabin-Winograd polynomials. Security of ${\sf {FAST}}$ has been rigorously analysed using the standard provable security approach and concrete security bounds have been derived. Based on our implementation results, we put forward ${\sf {FAST}}$ as a serious candidate for standardisation and deployment.
2020
Impact Factor: 0.935
5 Year Impact Factor: 0.976
2020 CiteScore: 1.5
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]