
ISSN:
1930-8337
eISSN:
1930-8345
All Issues
Inverse Problems and Imaging
June 2020 , Volume 14 , Issue 3
Select all articles
Export/Reference:
Total Variation (TV) is an effective method of removing noise in digital image processing while preserving edges. The scaling or regularization parameter in the TV process defines the amount of denoising, with a value of zero giving a result equivalent to the input signal. The discrepancy principle is a classical method for regularization parameter selection whereby data is fit to a specified tolerance. The tolerance is often identified based on the fact that the least squares data fit is known to follow a
Consider the problem of the range description of the tensor x-ray transform in
In the present paper we consider minimization based formulations of inverse problems
Discretization of
This paper is concerned with inverse source problems for the time-dependent Lamé system in an unbounded domain corresponding to either the exterior of a bounded cavity or the full space
This paper is concerned with uniqueness results in inverse acoustic and electromagnetic scattering problems with phaseless total-field data at a fixed frequency. We use superpositions of two point sources as the incident fields at a fixed frequency and measure the modulus of the acoustic total-field (called phaseless acoustic near-field data) on two spheres containing the scatterers generated by such incident fields on the two spheres. Based on this idea, we prove that the impenetrable bounded obstacle or the index of refraction of an inhomogeneous medium can be uniquely determined from the phaseless acoustic near-field data at a fixed frequency. Moreover, the idea is also applied to the electromagnetic case, and it is proved that the impenetrable bounded obstacle or the index of refraction of an inhomogeneous medium can be uniquely determined by the phaseless electric near-field data at a fixed frequency, that is, the modulus of the tangential component with the orientations
Distinguishing between the instantaneous and delayed scatterers in synthetic aperture radar (SAR) images is important for target identification and characterization. To perform this task, one can use the autocorrelation analysis of coordinate-delay images. However, due to the range-delay ambiguity the difference in the correlation properties between the instantaneous and delayed targets may be small. Moreover, the reliability of discrimination is affected by speckle, which is ubiquitous in SAR images, and requires statistical treatment.
Previously, we have developed a maximum likelihood based approach for discriminating between the instantaneous and delayed targets in SAR images. To test it, we employed simple statistical models. They allowed us to simulate ensembles of images that depend on various parameters, including aperture width and target contrast.
In the current paper, we enhance our previously developed methodology by establishing confidence levels for the discrimination between the instantaneous and delayed scatterers. Our procedure takes into account the difference in thresholds for different target contrasts without making any assumptions about the statistics of those contrasts.
Fluorescence molecular tomography (FMT) is an emerging tool for biomedical research. There are two factors that influence FMT reconstruction most effectively. The first one is regularization techniques. Traditional methods such as Tikhonov regularization suffer from low resolution and poor signal to noise ratio. Therefore, sparse regularization techniques have been introduced to improve the reconstruction quality. The second factor is the illumination pattern. A better illumination pattern ensures the quantity and quality of the information content of the data set, thus leading to better reconstructions. In this work, we take advantage of the discrete formulation of the forward problem to give a rigorous definition of an illumination pattern as well as the admissible set of patterns. We add restrictions in the admissible set as different types of regularizers to a discrepancy functional, generating another inverse problem with the illumination pattern as unknown. Both inverse problems of reconstructing the fluorescence distribution and finding the optimal illumination pattern are solved by efficient iterative algorithms. Numerical experiments have shown that with a suitable choice of regularization parameters, the two-step approach converges to an optimal illumination pattern quickly and the reconstruction result is improved significantly regardless of the initial illumination setting.
In this paper, we establish the unique determination results for several inverse acoustic scattering problems using the modulus of the near-field data. By utilizing the superpositions of point sources as the incident waves, we rigorously prove that the phaseless near-fields collected on an admissible surface can uniquely determine the location and shape of the obstacle as well as its boundary condition and the refractive index of a medium inclusion, respectively. We also establish the uniqueness in determining a locally rough surface from the phaseless near-field data due to superpositions of point sources. These are novel uniqueness results in inverse scattering with phaseless near-field data.
2020
Impact Factor: 1.639
5 Year Impact Factor: 1.720
2020 CiteScore: 2.6
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]