
ISSN:
1937-1632
eISSN:
1937-1179
All Issues
Discrete and Continuous Dynamical Systems - S
June 2020 , Volume 13 , Issue 6
Issue on advances in theory and real world applications of control and dynamic optimization
Select all articles
Export/Reference:
In this paper, we consider a multistage feedback control strategy for the production of 1, 3-propanediol(1, 3-PD) in microbial fermentation. The feedback control strategy is widely used in industry, and to the best of our knowledge, this is the first time it is applied to 1, 3-PD. The feedback control law is assumed to be linear of the concentrations of biomass and glycerol, and the coefficients in the controller are continuous. A multistage feedback control law is obtained by using the control parameterization method on the coefficient functions. Then, the optimal control problem can be transformed into an optimal parameter selection problem. The time horizon is partitioned adaptively. The corresponding gradients are derived, and finally, our numerical results indicate that the strategy is flexible and efficient.
In this paper, a two-product newsvendor problem is taken into consideration, where the demands of products are correlated random variables and the buyer is risk-averse. Some important qualitative properties of the constructed model are analyzed, particularly the gradient information of the model is obtained and incorporated into solution method of the model. Based on the theory of Copulas, an efficient algorithm, called the feasible-direction based BFGS algorithm, is developed for solution of the constrained optimization model. Case study shows the efficiency of model and algorithm, and numerical results demonstrate that compared with the situation of independent demands, the total order quantity reduces against the high dynamic interrelation coefficient of two demands with the same degree of risk-aversion, and the optimal order quantity decreases as the degree of risk-aversion becomes greater.
In this paper, we consider a joint pricing and inventory problem with promotion constrains over a finite planning horizon for a single fast-moving consumer good under monopolistic environment. The decision on the inventory is realized through the decision on inventory replenishment, i.e., decision on the quantity to be ordered. The demand function takes into account all reference price mechanisms. The main difficulty in solving this problem is how to deal with the binary logical decision variables. It is shown that the problem is equivalent to a quadratic programming problem involving binary decision variables. This quadratic programming problem with binary decision variables can be expressed as a series of conventional quadratic programming problems, each of which can be easily solved. The global optimal solution can then be obtained readily from the global solutions of the conventional quadratic programming problems. This method works well when the planning horizon is short. For longer planning horizon, we propose a multi-stage method for finding a near-optimal solution. In numerical simulation, the accuracy and efficiency of this multi-stage method is compared with a genetic algorithm. The results obtained validate the applicability of the constructed model and the effectiveness of the approach proposed. They also provide several interesting and useful managerial insights.
This paper focuses on the solution to nonlinear time-delay optimal control problems with time-varying delay subject to canonical equality and inequality constraints. Traditional control parameterization in conjunction with time-scaling transformation could optimize control parameters and switching times at the same time when the time-delays in the dynamic system are taken as constants. The purpose of this paper is to extend this method to solve the dynamic systems with time-varying delay. We introduce a hybrid time-scaling transformation that converts the given time-delay system into an equivalent system defined on a new time horizon with fixed switching times. Meanwhile, we obtain the value of time-delay state utilizing the relationship between the new time scale and the original one. After computing the gradients of the cost and constraints with respect to the control heights and its durations, we could solve the equivalent optimal control problem using gradient based optimization method.
In this paper, we consider time-delay optimal control of 1, 3-propan-ediol (1, 3-PD) fed-batch production involving multiple feeds. First, we propose a nonlinear time-delay system involving feeds of glycerol and alkali to formulate the production process. Then, taking the feeding rates of glycerol and alkali as well as the terminal time of process as the controls, we present a time-delay optimal control model subject to control and state constraints to maximize 1, 3-PD productivity. By a time-scaling transformation, we convert the optimal control problem into an equivalent problem with fixed terminal time. Furthermore, by applying control parameterization and constraint transcription techniques, we approximate the equivalent problem by a sequence of finite-dimensional optimization problems. An improved particle swarm optimization algorithm is developed to solve the resulting optimization problems. Finally, numerical results show that 1, 3-PD productivity increases considerably using the obtained optimal control strategy.
This paper studies new optimal control policies for solving complex decision-making problems encountered in industrial hybrid systems in a manufacturing setting where critical jobs exist in a busy structure. In such setting, different dynamical systems interlink each other and share common functions for smooth task execution. Entities arriving at shared resources compete for service. The interactions of industrial hybrid systems become more and more complex and need a suitable controller to achieve the best performance and to obtain the best possible service for each of the entities arriving at the system. To solve these challenges, we propose an optimal control policy to minimize the operational cost for the manufacturing system. Furthermore, we develop a hybrid model and a new smoothing algorithm for the cost balancing between the quality and the job tardiness by finding optimal service time of each job in the system.
Earth pressure balanced (EPB) shield machines are large and complex mechanical systems and have been widely applied to tunnel engineering. Tunnel face stability evaluation is very important for EPB shield machines to avoid ground settlement and guarantee safe construction during the tunneling process. In this paper, we propose a novel earth pressure field modeling approach to evaluate the tunnel face stability of large and complex EPB shield machines. Based on the earth pressures measured by the pressure sensors on the clapboard of the chamber, we construct a triangular mesh model for the earth pressure field in the chamber and estimate the normal vector at each measuring point by using optimization solution and projection Delaunay triangulation, which can reflect the change situation of the earth pressures in real time. Furthermore, we analyze the characteristics of the active and passive earth pressure fields in the limit equilibrium states and give a new evaluation criterion of the tunnel face stability based on Rankine's theory of earth pressure. The method validation and analysis demonstrate that the proposed method is effective for modeling the earth pressure field in the chamber and evaluating the tunnel face stability of EPB shield machines.
In this paper, a linear bilevel multiobjective programming problem is concerned. Based on the method of replacing the lower level problem with its optimality conditions, and taking the complementary constraints as the penalty term of the upper level objectives, we obtain the exact penalized multiobjective programming problem
Matrix completion problems have applications in various domains such as information theory, statistics, engineering, etc. Meanwhile, solving matrix completion problems is not a easy task since the nonconvex and nonsmooth rank operation is involved. Existing approaches can be categorized into two classes. The first ones use nuclear norm to take the place of rank operation, and any convex optimization algorithms can be used to solve the reformulated problem. The limitation of this class of approaches is singular value decomposition (SVD) is involved to tackle the nuclear norm which significantly increases the computational cost. The other ones factorize the target matrix by two slim matrices. Fast algorithms for solving the reformulated nonconvex optimization problem usually lack of global convergence, meanwhile convergence guaranteed algorithms require restricted stepsize. In this paper, we consider the matrix factorization model for matrix completion problems, and propose an alternating minimization method for solving it. The global convergence to a stationary point or local minimizer is guaranteed under mild conditions. We compare the proposed algorithm with some state-of-the-art algorithms in solving a bunch of testing problems. The numerical results illustrate the efficiency and great potential of our algorithm.
In this paper, we consider the closed-loop model of a power system in a multi-interference environment. For a multi-interference power system, the closed-loop identification is a difficult task. Yet, the model identification error can degrade the effect of the damping control. This could lead to instability of the power grid. Thus, for the closed-loop identification, we propose an iterative online identification algorithm based on the recursive least squares method and the v-gap distance. The convergence of the algorithm is proved by using direct method. The proposed algorithm is applied to the New England system, for which the results obtained are compared with those obtained using the prediction error method and the Runge-Kutta method. From the simulation study being carried out on the IEEE 39-bus New England system, we observe that by using the iterative identification algorithm proposed in this paper, the output response time is reduced by about half when compared with those obtained by using the prediction error method and the Runge-Kutta method. Also, the number of oscillations in the output response is less. These clearly indicate that the algorithm proposed can effectively suppress low frequency oscillation. As for the amplitudes of the output responses produced by the three methods, they are basically the same.
In this paper, we study a variant of the state-dependent sweeping process with velocity constraint. The constraint
An impulsive control is one of the important stabilizing control strategies and exhibits many strong system performances such as shorten action time, low power consumption, effective resistance to uncertainty. This paper develops a nonlinear impulsive control approach to stabilize discrete-time dynamical systems. Sufficient conditions for asymptotical stability of discrete-time impulsively controlled systems are derived. Furthermore, an Ishi chaotic neural network is effectively stabilized by a designed nonlinear impulsive control.
A control parametrization based optimal PID tuning scheme for a single-link manipulator is developed in this paper. The performance specifications of the control system are formulated as continuous state inequality constraints. Then, the PID optimal tuning problem of the single-link manipulator can be formulated as an optimal parameter selection problem subject to continuous inequality constraints. These continuous inequality constraints are handled by the constraint transcription method together with a local smoothing technique. In such a way, the transformed problem becomes an optimal parameter selection problem in a canonical form, which can be solved efficiently by control parametrization method. Since approach is using the gradient-based method, the corresponding gradient formulas for the cost function and the constraints are derived, respectively. The effectiveness of the proposed method is demonstrated by numerical simulations.
In this paper, we consider a class of optimal control problems governed by nonlinear time-delay switched systems, in which the system parameters and switching times between different subsystems are decision variables to be optimized. We propose a new computational approach to deal with the computational difficulties caused by variable switching times. The original time-delay switched system is firstly transformed into an equivalent switched system defined on a new time horizon where the switching times are fixed, but each of the subsystems contain a variable time-delay that depends on the durations of each sub-system in the original system. By deriving the analytical form for the variable time-delay in the new time horizon, we can solve the new time-delay switched system. Then, gradient-based optimization algorithm can be applied to solve the equivalent problem efficiently. Numerical results show that this new approach is effective.
Adjoint methods applied to solve optimal control problems (OCPs) have a restriction that the number of constraints shall be less than that of optimization variables. Otherwise, they are less efficient than the forward methods. This paper proposes an efficient adjoint method to solve OCPs for index-
Green finance is an innovative model that can promote sustainable economic development. The green bonds also develop gradually as a part of green finance. The green bonds are designed to fund the projects of positive environmental impact. If the green bonds are superior to other debt securities, they will attract more investors' participation in green energy projects. Thus, the design of green bonds is crucial to the development of green bonds market. This article assumes that the floating rate of green bonds is linked to carbon price, and carbon price is described by a jump diffusion process. The carbon price fluctuation can lead to interest rate fluctuation of green bonds. We set two boundary values of carbon price, and the coupon rate is revalued when the carbon price reaches the boundary. The higher the carbon price is, the higher the coupon rate is to be paid by issuers. Thus, the boundary can impel issuers to boost energy savings and emission-reduction, and the higher interest rate will also attract more investors to invest in green bonds. The lower the carbon price is, the lower the interest rate is to be paid by issuers. Accordingly, the boundary may encourage issuers to boost emission reduction. This design can monitor and incentivize issuers to make more contribution to green finance. Furthermore, the design is characterized by the double-barrier option, such that the interest rate of green bonds can be obtained by double-barrier option pricing. Subsequently, the central difference method and the composite trapezoidal formula are employed to obtain the numerical solution. Finally, we conduct the sensitivity analysis of the model.
2020
Impact Factor: 2.425
5 Year Impact Factor: 1.490
2020 CiteScore: 3.1
Readers
Authors
Editors/Guest Editors
Referees
Librarians
Call for special issues
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]