
Previous Article
An investigation of the global properties of a twodimensional competing species model
 DCDSB Home
 This Issue

Next Article
Travelling waves for a combustion model coupled with hyperbolic radiation moment models
Homogenization of the Maxwell's system for conducting media
1.  Department of Electronics Engineering and Computer Science, Tung Fang Institute of Technology, Kaohsiung 829, Taiwan 
2.  Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan 
3.  General Education Center, Fortune Institute of Technology, Kaohsiung, Taiwan 
[1] 
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159179. doi: 10.3934/ipi.2007.1.159 
[2] 
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in onespace dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754762. doi: 10.3934/proc.2011.2011.754 
[3] 
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, 2021, 14 (3) : 541570. doi: 10.3934/krm.2021015 
[4] 
Yan Chen, Kewei Zhang. Young measure solutions of the twodimensional PeronaMalik equation in image processing. Communications on Pure & Applied Analysis, 2006, 5 (3) : 617637. doi: 10.3934/cpaa.2006.5.617 
[5] 
J. J. Morgan, HongMing Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems  B, 2001, 1 (4) : 485494. doi: 10.3934/dcdsb.2001.1.485 
[6] 
Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic & Related Models, 2019, 12 (5) : 11851196. doi: 10.3934/krm.2019045 
[7] 
Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826834. doi: 10.3934/proc.2015.0826 
[8] 
T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277288. doi: 10.3934/cpaa.2006.5.277 
[9] 
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems  S, 2021, 14 (10) : 35293539. doi: 10.3934/dcdss.2020432 
[10] 
Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control & Optimization, 2021, 11 (4) : 487493. doi: 10.3934/naco.2020039 
[11] 
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 30153027. doi: 10.3934/dcdsb.2016085 
[12] 
Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 18951916. doi: 10.3934/cpaa.2009.8.1895 
[13] 
Pedro AcevesSánchez, Christian Schmeiser. Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinetic & Related Models, 2017, 10 (3) : 541551. doi: 10.3934/krm.2017021 
[14] 
Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409439. doi: 10.3934/krm.2018019 
[15] 
Ammari Zied, Liard Quentin. On uniqueness of measurevalued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 723748. doi: 10.3934/dcds.2018032 
[16] 
MengXue Chang, BangSheng Han, XiaoMing Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, 2021, 29 (5) : 30173030. doi: 10.3934/era.2021024 
[17] 
Xiaoyuan Chang, Junping Shi. Bistable and oscillatory dynamics of Nicholson's blowflies equation with Allee effect. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021242 
[18] 
Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 793806. doi: 10.3934/dcdsb.2007.7.793 
[19] 
T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217235. doi: 10.3934/cpaa.2004.3.217 
[20] 
Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterrafredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209219. doi: 10.3934/mfc.2021013 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]