
ISSN:
1937-5093
eISSN:
1937-5077
All Issues
Kinetic and Related Models
October 2018 , Volume 11 , Issue 5
Select all articles
Export/Reference:
The Einstein-Vlasov-Fokker-Planck system describes the kinetic diffusion dynamics of self-gravitating particles within the Einstein theory of general relativity. We study the Cauchy problem for spatially homogeneous and isotropic solutions and prove the existence of both global-in-time solutions and solutions that blow-up in finite time depending on the size of certain functions of the initial data. We also derive information on the large-time behavior of global solutions and toward the singularity for solutions which blow-up in finite time. Our results entail the existence of a phase of decelerated expansion followed by a phase of accelerated expansion, in accordance with the physical expectations in cosmology.
The original Keller-Segel system proposed in [
In general, the non-conservative approximation of coagulation-fragmentation equations (CFEs) may lead to the occurrence of gelation phenomenon. In this article, it is shown that the non-conservative approximation of CFEs can also provide the existence of mass conserving solutions to CFEs for large classes of unbounded coagulation and fragmentation kernels.
In this paper, we study the generalized polynomial chaos (gPC) based stochastic Galerkin method for the linear semiconductor Boltzmann equation under diffusive scaling and with random inputs from an anisotropic collision kernel and the random initial condition. While the numerical scheme and the proof of uniform-in-Knudsen-number regularity of the distribution function in the random space has been introduced in [
In this paper, the dynamics of three dimensional Vlasov-Poisson system with radiation damping is investigated. We prove global existence of a classical as well as weak solution that propagates boundedness of velocity-space support or velocity-space moment of order two respectively. This kind of solutions possess finite mass but need not necessarily have finite kinetic energy. Moreover, uniqueness of the classical solution is also shown.
We developed and implemented a numerical algorithm for evaluating the Boltzmann collision integral with
This paper is concerned with the stability of noncritical/critical traveling waves for nonlocal time-delayed reaction-diffusion equation. When the birth rate function is non-monotone, the solution of the delayed equation is proved to converge time-exponentially to some (monotone or non-monotone) traveling wave profile with wave speed
Mixed-moment minimum-entropy models (
2020
Impact Factor: 1.432
5 Year Impact Factor: 1.641
2020 CiteScore: 3.1
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]