
ISSN:
1937-5093
eISSN:
1937-5077
All Issues
Kinetic and Related Models
October 2021 , Volume 14 , Issue 5
Select all articles
Export/Reference:
A revertible discrete velocity kinetic model is introduced when the environment is spatially heterogeneous. It is proved that the parabolic scale singular limit of the model exists and satisfies a new heterogeneous diffusion equation that depends on the diffusivity and the turning frequency together. An energy functional is introduced which takes into account spatial heterogeneity in the velocity field. The monotonicity of the energy functional is the key to obtain uniform estimates needed for the weak convergence proof. The Div-Curl lemma completes the strong convergence proof.
We consider the modeling of light beams propagating in highly forward-peaked turbulent media by fractional Fokker-Planck equations and their approximations by fractional Fermi pencil beam models. We obtain an error estimate in a 1-Wasserstein distance for the latter model showing that beam spreading is well captured by the Fermi pencil-beam approximation in the small diffusion limit.
The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation. In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In this article, we refine some of these results in order to foster the understanding of the model. We prove with deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.
In this work we are interested in the stationary preserving property of asymptotic preserving (AP) schemes for kinetic models. We introduce a criterion for AP schemes for kinetic equations to be uniformly stationary preserving (SP). Our key observation is that as long as the Maxwellian of the distribution function can be updated explicitly, such AP schemes are also SP. To illustrate our observation, three different AP schemes for three different kinetic models are considered. Their SP property is proved analytically and tested numerically, which confirms our observations.
In this paper, we propose a Boltzmann-type kinetic description of mass-varying interacting multi-agent systems. Our agents are characterised by a microscopic state, which changes due to their mutual interactions, and by a label, which identifies a group to which they belong. Besides interacting within and across the groups, the agents may change label according to a state-dependent Markov-type jump process. We derive general kinetic equations for the joint interaction/label switch processes in each group. For prototypical birth/death dynamics, we characterise the transient and equilibrium kinetic distributions of the groups via a Fokker-Planck asymptotic analysis. Then we introduce and analyse a simple model for the contagion of infectious diseases, which takes advantage of the joint interaction/label switch processes to describe quarantine measures.
Consistent BGK models for inert mixtures are compared, first in their kinetic behavior and then versus the hydrodynamic limits that can be derived in different collision-dominated regimes. The comparison is carried out both analytically and numerically, for the latter using an asymptotic preserving semi-Lagrangian scheme for the BGK models. Application to the plane shock wave in a binary mixture of noble gases is also presented.
2020
Impact Factor: 1.432
5 Year Impact Factor: 1.641
2020 CiteScore: 3.1
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]