
ISSN:
1937-5093
eISSN:
1937-5077
All Issues
Kinetic and Related Models
February 2022 , Volume 15 , Issue 1
Select all articles
Export/Reference:
In the present paper, we study the diffusion limit of the classical solution to the Vlasov-Poisson-Fokker-Planck (VPFP) system with initial data near a global Maxwellian. We prove the convergence and establish the optimal convergence rate of the global strong solution to the VPFP system towards the solution to the drift-diffusion-Poisson system based on the spectral analysis with precise estimation on the initial layer.
By employing the Fourier transform to derive key a priori estimates for the temporal gradient of the chemical signal, we establish the existence of global solutions and hydrodynamic limit of a chemotactic kinetic model with internal states and temporal gradient in one dimension, which is a system of two transport equations coupled to a parabolic equation proposed in [
This work deals with the modeling of plasmas, which are ionized gases. Thanks to machine learning, we construct a closure for the one-dimensional Euler-Poisson system valid for a wide range of collisional regimes. This closure, based on a fully convolutional neural network called V-net, takes as input the whole spatial density, mean velocity and temperature and predicts as output the whole heat flux. It is learned from data coming from kinetic simulations of the Vlasov-Poisson equations. Data generation and preprocessings are designed to ensure an almost uniform accuracy over the chosen range of Knudsen numbers (which parametrize collisional regimes). Finally, several numerical tests are carried out to assess validity and flexibility of the whole pipeline.
In this paper, we proceed as suggested in the final section of [
In this paper, we present sharp decay estimates for small data solutions to the following two systems: the Vlasov-Poisson (V-P) system in dimension 3 or higher and the Vlasov-Yukawa (V-Y) system in dimension 2 or higher. We rely on a modification of the vector field method for transport equation as developed by Smulevici in 2016 for the Vlasov-Poisson system. Using the Green's function in particular to estimate the bilinear terms, we improve Smulevici's result by removing the requirement of some
2021
Impact Factor: 1.398
5 Year Impact Factor: 1.685
2021 CiteScore: 2.7
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]