
ISSN:
1937-5093
eISSN:
1937-5077
All Issues
Kinetic and Related Models
August 2022 , Volume 15 , Issue 4
Special Issue on nonlinear waves and kinetic theory dedicated to the memory of Bob Glassey. Part II
Select all articles
Export/Reference:
We derive pointwise bounds for the Green's function and its derivatives for the Laplace operator on smooth bounded sets in
In this paper, we propose a novel conservative formulation for solving kinetic equations via neural networks. More precisely, we formulate the learning problem as a constrained optimization problem with constraints that represent the physical conservation laws. The constraints are relaxed toward the residual loss function by the Lagrangian duality. By imposing physical conservation properties of the solution as constraints of the learning problem, we demonstrate far more accurate approximations of the solutions in terms of errors and the conservation laws, for the kinetic Fokker-Planck equation and the homogeneous Boltzmann equation.
Although the nuclear fusion process has received a great deal of attention in recent years, the amount of mathematical analysis that supports the stability of the system seems to be relatively insufficient. This paper deals with the mathematical analysis of the magnetic confinement of the plasma via kinetic equations. We prove the global wellposedness of the Vlasov-Maxwell system in a two-dimensional annulus when a huge (but finite-in-time) external magnetic potential is imposed near the boundary. We assume that the solution is axisymmetric. The authors hope that this work is a step towards a more generalized work on the three-dimensional Tokamak structure. The highlight of this work is the physical assumptions on the external magnetic potential well which remains finite within a finite time interval and from that, we prove that the plasma never touches the boundary. In addition, we provide a sufficient condition on the magnitude of the external magnetic potential to guarantee that the plasma is confined in an annulus of the desired thickness which is slightly larger than the initial support. Our method uses the cylindrical coordinate forms of the Vlasov-Maxwell system.
In this paper, we study fermion ground states of the relativistic Vlasov-Poisson system arising in the semiclassical limit from relativistic quantum theory of white dwarfs. We show that fermion ground states of the three dimensional relativistic Vlasov-Poisson system exist for subcritical mass, the mass density of such fermion ground states satisfies the Chandrasekhar equation for white dwarfs, and that they are orbitally stable as long as solutions exist.
The initial value problem for incompressible Hookean viscoelastic motion in three space dimensions has global strong solutions with small displacements.
The Kurth solution is a particular non-isotropic steady state solution to the gravitational Vlasov-Poisson system. It has the property that by means of a suitable time-dependent transformation it can be turned into a family of time-dependent solutions. Therefore, for a general steady state
for suitable functions
This paper is dedicated to the memory of Professor Robert Glassey.
We consider linear stability of steady states of 1
We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system in maximal areal coordinates. The latter coordinates have been used both in analytical and numerical investigations of the Einstein-Vlasov system [
A collisionless plasma is modeled by the Vlasov-Poisson system. Solutions in three space dimensions that have smooth, compactly supported initial data with spherical symmetry are considered. An improved field estimate is presented that is based on decay estimates obtained by Illner and Rein. Then some estimates are presented that ensure only particles with sufficiently small velocity can be found within a certain (time dependent) ball.
We establish an instantaneous smoothing property for decaying solutions on the half-line
2021
Impact Factor: 1.398
5 Year Impact Factor: 1.685
2021 CiteScore: 2.7
Readers
Authors
Editors
Referees
Librarians
Email Alert
Add your name and e-mail address to receive news of forthcoming issues of this journal:
[Back to Top]