eISSN:

2163-2480

All Issues

## Evolution Equations and Control Theory

February 2022 , Volume 11 , Issue 1

Select all articles

Export/Reference:

*+*[Abstract](1998)

*+*[HTML](543)

*+*[PDF](462.89KB)

**Abstract:**

We discuss the existence and uniqueness of mild solutions for a class of quasi-linear fractional integro-differential equations with impulsive conditions via Hausdorff measures of noncompactness and fixed point theory in Banach space. Mild solution controllability is discussed for two particular cases.

*+*[Abstract](1572)

*+*[HTML](506)

*+*[PDF](374.71KB)

**Abstract:**

This paper is devoted to the lifespan of solutions to a damped plate equation with logarithmic nonlinearity

Finite time blow-up criteria for solutions at both lower and high initial energy levels are established and an upper bound for the blow-up time is given for each case. Moreover, by constructing a new auxiliary functional and making full use of the strong damping term, a lower bound for the blow-up time is also derived.

*+*[Abstract](1332)

*+*[HTML](478)

*+*[PDF](449.22KB)

**Abstract:**

We consider a non-autonomous two-dimensional Newton-Boussinesq equation with singularly oscillating external forces depending on a small parameter

*+*[Abstract](1779)

*+*[HTML](550)

*+*[PDF](410.81KB)

**Abstract:**

In this paper, we consider the second order semilinear impulsive differential equations with state-dependent delay. First, we consider a linear second order system and establish the approximate controllability result by using a feedback control. Then, we obtain sufficient conditions for the approximate controllability of the considered system in a separable, reflexive Banach space via properties of the resolvent operator and Schauder's fixed point theorem. Finally, we apply our results to investigate the approximate controllability of the impulsive wave equation with state-dependent delay.

*+*[Abstract](1701)

*+*[HTML](482)

*+*[PDF](713.78KB)

**Abstract:**

In this paper, we study the complete controllability for a class of fractional evolution equations with a common type of fuzzy uncertainty. By using Hausdorff measure of noncompactness and Krasnoselskii's fixed point theorem in complete semilinear metric space, we give some sufficient conditions of the controllability for the fuzzy fractional evolution equations without involving the compactness of strongly continuous semigroup and the perturbation function. In addition, the controllable problem is considered in a subspace of fuzzy numbers in which the gH-differences always exist, that guarantees the satisfaction of hypotheses of the problem. An application example related to electrical circuit is given to illustrate the effectiveness of theoretical results.

*+*[Abstract](1223)

*+*[HTML](440)

*+*[PDF](520.91KB)

**Abstract:**

The three-dimensional viscoelastic fluid flow equations, arising from the motion of Kelvin-Voigt (Kelvin-Voight) fluids in bounded domains is considered in this work. We investigate the long-term dynamics of such viscoelastic fluid flow equations with "fading memory" (non-autonomous). We first establish the existence of an absorbing ball in appropriate spaces for the semigroup defined for the Kelvin-Voigt fluid flow equations of order one with "fading memory" (transformed autonomous coupled system). Then, we prove that the semigroup is asymptotically compact, and hence we establish the existence of a global attractor for the semigroup. We provide estimates for the number of determining modes for both asymptotic as well as for trajectories on the global attractor. Once the differentiability of the semigroup with respect to initial data is established, we show that the global attractor has finite Hausdorff as well as fractal dimensions. We also show the existence of an exponential attractor for the semigroup associated with the transformed (equivalent) autonomous Kelvin-Voigt fluid flow equations with "fading memory". Finally, we show that the semigroup has Ladyzhenskaya's squeezing property and hence is quasi-stable, which also implies the existence of global as well as exponential attractor having finite fractal dimension.

*+*[Abstract](2325)

*+*[HTML](571)

*+*[PDF](284.35KB)

**Abstract:**

In this paper, an inequality for a transfer function is obtained assuming that its residues at the poles located on the imaginary axis in the right half plane. In addition, the extremal function of the proposed inequality is obtained by performing sharpness analysis. To interpret the results of analyses in terms of control theory, root-locus curves are plotted. According to the results, marginally and asymptotically stable transfer functions can be determined using the obtained extremal function in the proposed theorem.

*+*[Abstract](1483)

*+*[HTML](478)

*+*[PDF](382.39KB)

**Abstract:**

This work devotes to the study on problems of optimal control and time optimal control for a neutral integro-differential evolution system with infinite delay. The main technique is the theory of resolvent operators for linear neutral integro-differential evolution systems constructed recently in literature. We first establish the existence and uniqueness of mild solutions and discuss the compactness of the solution operator for the considered control system. Then, we investigate the existence of optimal controls for the both cases of bounded and unbounded admissible control sets under some assumptions. Meanwhile, the existence of time optimal control to a target set is also considered and obtained by limit arguments. An example is given at last to illustrate the applications of the obtained results.

*+*[Abstract](1301)

*+*[HTML](523)

*+*[PDF](415.01KB)

**Abstract:**

We consider a hyperbolic system of partial differential equations on a bounded interval coupled with ordinary differential equations on both ends. The evolution is governed by linear balance laws, which we treat with semigroup and time-space methods. Our goal is to establish the exponential stability in the natural state space by utilizing the stability with respect to the first-order energy of the system. Derivation of a priori estimates plays a crucial role in obtaining energy and dissipation functionals. The theory is then applied to specific physical models.

*+*[Abstract](1894)

*+*[HTML](557)

*+*[PDF](356.31KB)

**Abstract:**

In this paper, we study the nonlocal problem for pseudo-parabolic equation with time and space fractional derivatives. The time derivative is of Caputo type and of order

*+*[Abstract](1090)

*+*[HTML](484)

*+*[PDF](361.25KB)

**Abstract:**

The goal of this paper is to provide systematic approaches to study the feedback control systems governed by fractional impulsive delay evolution equations involving Caputo fractional derivatives in separable reflexive Banach spaces. This work is a continuation of previous work. We firstly give an existence result of mild solutions for the equations by applying the Banach's fixed point theorem and the Leray-Schauder alternative fixed point theorem. Next, by using the Filippove theorem and the Cesari property, we obtain the existence result of feasible pairs for the feedback control system. Finally, some applications are given to illustrate our main results.

*+*[Abstract](1324)

*+*[HTML](470)

*+*[PDF](350.11KB)

**Abstract:**

We study the generalized Rayleigh-Stokes problem involving a fractional derivative and nonlinear perturbation. Our aim is to analyze some sufficient conditions ensuring the global solvability, regularity and asymptotic stability of solutions. In particular, if the nonlinearity is Lipschitzian then the mild solution of the mentioned problem becomes a classical one and its convergence to equilibrium point is proved.

*+*[Abstract](1013)

*+*[HTML](408)

*+*[PDF](404.45KB)

**Abstract:**

The one-dimensional Dirac dynamical system

where *amplitude model* of the original

*+*[Abstract](896)

*+*[HTML](348)

*+*[PDF](1221.12KB)

**Abstract:**

We analyze the interior controllability problem for a non-local Schrödinger equation involving the fractional Laplace operator

*+*[Abstract](900)

*+*[HTML](320)

*+*[PDF](517.23KB)

**Abstract:**

This paper recalls a partial differential equations system, which is the linearization of a recognized fluid-elasticity interaction three-dimensional model. A collection of regularity results for the traces of the fluid variable on the interface between the body and the fluid is established, in the case a suitable boundary dissipation is present. These regularity estimates are geared toward ensuring the well-posedness of the Riccati equations which arise from the associated optimal boundary control problems on a finite as well as infinite time horizon. The theory of operator semigroups and interpolation provide the main tools.

2020
Impact Factor: 1.081

5 Year Impact Factor: 1.269

2020 CiteScore: 1.6

## Readers

## Authors

## Editors

## Referees

## Librarians

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]